LA HUELLA DE CARBONO DEL MAÍZ COMO VÍNCULO ENTRE PRODUCCIÓN Y AMBIENTE
Palavras-chave:
Análisis de Ciclo de Vida, Emisiones de GEI, Calentamiento global, Agricultura de precisiónResumo
La huella de carbono (HC) representa la sumatoria de gases de efecto invernadero emitidos por una persona, institución, programa o producto, y es la medida de uno de los impactos que provocan las actividades de la humanidad sobre el ambiente. El objetivo general de este trabajo fue estimar la HC del maíz producido en Córdoba, Argentina. El objetivo específico fue analizar la diferencia de HC a través de un manejo sitio-específico de la fertilización nitrogenada. La unidad declarada es: 1 t de grano en la puerta del campo. Los métodos utilizados siguen las normas ISO 14067 y las directrices del Panel Intergubernamental de Expertos sobre el Cambio Climático. Se utilizó información provista por la Bolsa de Cereales de Córdoba y de un ensayo a campo en Alejandro Roca, Córdoba. La HC resultó en 156,5 kg CO2eq t-1 de maíz, promedio ponderado por departamento de la provincia de Córdoba. En el ensayo a campo, la dosis variable de N permitió reducir un 21,45% la HC, de 150,75 kg CO2eq t-1 a 124,13 kg CO2eq t-1. Los resultados están en un rango bajo, con respecto a la bibliografía, utilizando los mismos métodos. Una posible explicación es el bajo nivel de insumos que se aplican al cultivo, en términos comparativos, como así también la siembra directa, con menor consumo de combustible. En el ensayo, se explica por un uso más eficiente del fertilizante.
Referências
Adeyemi, O., Keshavarz-Afshar, R., Jahanzad, E., Battaglia, M. L., Luo, Y. y Sadaghpour, A. (2020). Effect of wheat cover crop and split nitrogen application on corn yield and nitrogen use efficiency. Agronomy, 10(8), 2-11. https://doi.org/10.3390/agronomy10081081
Adviento-Borbe, M. A., Haddix, M. L., Binder, D. L., Walters, D. T., y Dobermann, A. (2007). Soil greenhouse gas fluxes and global warming potential in four high-yielding maize systems. Obtenido de Global Change Biology 13: 1972–1988 - September 2007: https://doi.org/10.1111/j.1365-2486.2007.01421.x
Agyin-Birikorang, S., Tindjina, I., Adu-Gyamfi, R., Dauda, H. W., Fuseini, A. R. y Singh, U. (2020). Agronomic effectiveness of urea deep placement technology for upland maize production. Nutrient Cycling in Agroecosystems, 116(2), 179–193. https://doi.org/10.1007/s10705-019-10039-8
Ahmed, J., Almeida, E., Aminetzah, D., Denis, N., Henderson, K., Katz, J., Kitchel, H. y Mannion, P. (2020). Agriculture and climate change. Reducing emissions through improved farming practices. McKinsey & Company. https://www.mckinsey.com/industries/agriculture/our-insights/reducing-agriculture-emissions-through-improved-farming-practices#
Alvarez, C., Costantini, A., Alvarez, C. R., Alves, B. J., Jantalia, C. P., Martellotto, E. E., y Urquiaga, S. (2012). Soil nitrous oxide emissions under different management practices in the semiarid region of the Argentinian Pampas. Nutrient Cycling in Agroecosystems, 94(2–3), 209–220. https://doi.org/10.1007/S10705-012-9534-9
Amaia, A., Lafarga, A., del Hierro, O., Unamunzaga, O., Besga, G., Domench, F., y Sopelana, A. (2012). Huella de Carbono de los Cereales: Análisis de la emisión de gases de efecto invernadero en el sector agroalimentario. https://www.navarraagraria.com/categories/item/257-huella-de-carbono-de-los-cereales-analisis-de-la-emision-de-gases-de-efecto-invernadero-en-el-sector-agroalimentario: Navarra Agraria ISSN 0214-6401, Nº 194, 2012, págs. 31-38. Navarra, España.
Andrade, F. (2021). Los desafíos de la agricultura global. Ediciones INTA. https://repositorio.inta.gob.ar/handle/20.500.12123/9137
Arrieta, E. M., Cuchietti, A., Cabrol, D. y González, A. D. (2018). Greenhouse gas emissions and energy efficiencies for soybeans and maize cultivated in different agronomic zones: A case study of Argentina. Science of the Total Environment, 625, 199–208. https://doi.org/10.1016/j.scitotenv.2017.12.286
Balafoutis, A., Beck, B., Fountas, S., Vangeyte, J., Van der Wal, T., Soto, I., Gómez-Barbero, M., Barnes, a. y Eory, V. (2017). Precision Agriculture Technologies Positively Contributing to GHG Emissions Mitigation, Farm Productivity and Economics. Sustainability, 8 (9), 1339.
Bolsa de Cereales de Córdoba [BCCBA]. (2021). Cálculos finales de producción de maíz en Córdoba – Campaña 2020/21. Bolsa de Cereales de Córdoba, Departamento de Información Agronómica, Informe N° 377. https://www.bccba.org.ar/informes/calculos-finales-de-produccion-de-maiz-en-cordoba-campana-2020-21/
Bongiovanni, R. y Lowenberg-DeBoer, J. (2004). Precision Agriculture and Sustainability. Journal of Precision Agriculture, 5, 359–387.
Bongiovanni, R. y Tuninetti, L. (2021). Huella de carbono y huella energética del etanol anhidro producido en una mini destilería “minidest” en origen. Revista de Investigaciones Agropecuarias (RIA), 47(2).
Bongiovanni, R., Mantovani, E. C., Best, S. y Roel, A. (2006). Agricultura de precisión: Integrando conocimientos para una agricultura moderna y sustentable. Programa Cooperativo para el Desarrollo Tecnológico Agroalimentario y Agroindustrial del Cono Sur (PROCISUR) – Instituto Interamericano de cooperación para la Agricultura (IICA). https://www.procisur.org.uy/bibliotecas/libros/agricultura-de-precision-integrando-conocimientos-para-una-agricultura-moderna-y-sustentable/es
Boone, L., Van linden, V., De Meester, S., Vandecasteele, B., Muylle, H., Roldán-Ruiz, I., Nemecek, T. y Dewulf, J. (2016). Environmental life cycle assessment of grain maize production: An analysis of factors causing variability. Science of the Total Environment, 15(553), 551–564: https://doi.org/10.1016/j.scitotenv.2016.02.089
Bricchi, E., Degioanni, A. y Cantero, A. (2006). El origen de los sistemas suelos. En E. Bricchi y A. Degioanni (Comps.), El sistema suelo. Origen y propiedades (pp. 13–24). Editorial de la Universidad Nacional de Río Cuarto, Argentina.
Brown, R. M., Dillon, C. R., Schieffer, J. y Shockley, J. M. (2015). The carbon footprint and economic impact of precision agriculture technology on a corn and soybean farm. Journal of Environmental Economics and Policy, 5(3), 335–348. https://doi.org/10.1080/21606544.2015.1090932
Correndo, A. A., Rotundo, J. L., Tremblay, N., Archontoulis, S., Coulter, J. A., Ruiz-Diaz, D., Franze, D., Franzluebbers, A. J., Nafziger, E., Schwalbert, R., Steinke, K., Williams, J., Messina, C. D. y Ciampitti, I. A. (2021). Assessing the uncertainty of maize yield without nitrogen fertilization. Field Crops Research, 260, 107985. https://doi.org/10.1016/j.fcr.2020.107985
Espósito, G. (2013). Análisis de la variabilidad espacio-temporal de la respuesta al nitrógeno en maíz mediante un modelo econométrico mixto espacial (MEME) [Tesis Doctoral, Universidad Nacional de Córdoba]. Repositorio Digital de la Universidad Nacional de Córdoba. https://rdu.unc.edu.ar/handle/11086/1497
European Commission. (2020). Flash Eurobarometer 367: Attitudes of Eropeans towards building the single market for green products. The Official portal for European data. https://data.europa.eu/data/datasets/s1048_367?locale=en
Eyhérabide, G. H. (2012). Bases para el Manejo del Cultivo de Maíz. Ediciones INTA. https://inta.gob.ar/documentos/bases-para-el-manejo-del-cultivo-de-maiz
Finger, R., Swinton, S. M., El Benni, N. y Walter, A. (2019). Precision Farming at the Nexus of Agricultural Production and the Environment. Annual Review of Resource Economics, 11, 313-335. https://doi.org/10.1146/annurev-resource-100518-093929
Grassini, P., y Cassman, K. (2012). High-yield maize with large net energy yield and small global warming intensity. Obtenido de Proc. Natl. Acad. Sci. U. S. A. 109, 1074–1079: https://www.pnas.org/doi/full/10.1073/pnas.1116364109
Hilbert, J. A., Manosalva, J. A. y Ponieman, K. (2021). Estudios sobre biorefinerías de maíz en la Argentina. Proceeding of the 9th International Conferencie on Life Cycle Assessment (pp. 190-193). CILCA, Buenos Aires.
Holka, M., y Bienkowski, J. (2020). Carbon Footprint and Life-Cycle Costs of Maize Production in Conventional and Non-Inversion Tillage Systems. Obtenido de Agronomy 2020, 10, 1877: doi:10.3390/agronomy10121877
Institute for Business Vale [IBM]. (2020). Meet the 2020 consumers driving change. https://www.ibm.com/thought-leadership/institute-business-value/report/consumer-2020
International Fertilizer Association [IFA]. (2019). IFASTAT. Statistical information on fertilizer & raw materials supply and fertilizer consumption. https://www.ifastat.org/databases
International Society of Precision Agriculture [ISPA]. (2021). Precision Ag Definition. https://ispag.org/about/definition
IRAM-ISO 14067. (2019). Gases de efecto invernadero. Huella de carbono de productos. Requisitos y directrices para cuantificación. Primera edición 2019-11-08. https://catalogo.iram.org.ar/#/normas/detalles/12261
Kongshaug, G. (1998). Energy consumption and greenhouse gas emissions in fertilizer production. IFA Technical Conference. International Fertilizer Industry Association.
Ma, B. L., Liang, B. C., Biswas, D. K., Morrison, M. J. y McLaughlin, N. B. (2012). The carbon footprint of maize production as affected by nitrogen fertilizer and maize-legume rotations. Nutrient Cycling in Agroecosystems, 94,15-31. https://doi.org/10.1007/s10705-012-95
Maestrini, B. y Basso, B. (2018). Drivers of within-field spatial and temporal variability of crop yield across the US Midwest. Scientific Reports, 8(1), 1-9. https://doi.org/10.1038/s41598-018-32779-3
Morales-Morales, E. J., Rubí-Arriaga, M., López-Sandoval, J. A., Martínez-Campos, Á. R. y Morales-Rosales, E. J. (2019). Urea (NBPT) una alternativa en la fertilización nitrogenada de cultivos anuales. Revista Mexicana de Ciencias Agrícolas, 10(8), 1875–1886. https://doi.org/10.29312/REMEXCA.V10I8.1732
Organización de las Naciones Unidas [ONU]. (2015). Transformar nuestro mundo: la Agenda 2030 para el Desarrollo Sostenible. Resolución aprobada por la Asamblea General el 25 de septiembre de 2015. ONU A/RES/70/1. Roma.
Panel Intergubernamental de Expertos sobre el Cambio Climático [IPCC]. (2019). Perfeccionamiento de 2019 de las Directrices del IPCC de 2006 para los inventarios nacionales de gases de efecto invernadero. Volumen 4: Agricultura, silvicultura y otros usos de la tierra. https://www.ipcc-nggip.iges.or.jp/public/2019rf/vol4.html
Pretty, J., Benton, T. G., Bharucha, Z. P., Dicks, L. V., Flora, C. B., Godfray, H. C. y Wratten, S. (2018). Global assessment of agricultural system redesign for sustainable intensification. Nature Sustainability, 1(8), 441-446. https://www.nature.com/articles/s41893-018-0114-0
Qi, J. Y., Yang, S. T., Xue, J. F., Liu, C. X., Du, T. Q., Hao, J. P. y Cui, F. Z. (2018). Response of carbon footprint of spring maize production to cultivation patterns in the Loess Plateau, China. Journal of Cleaner Production, 187, 525–536. https://doi.org/10.1016/j.jclepro.2018.02.184
Ransom, C. J., Kitchen, N. R., Camberato, J. J., Carter, P. R., Ferguson, R. B., Fernández, F. G., Franze, D. W., Laboski, C. A. M., Brenton Myers, D., Nafziger, E. D., Sawyer, J. E. y Shanahan, J. F. (2019). Statistical and machine learning methods evaluated for incorporating soil and weather into corn nitrogen recommendations. Computers and Electronics in Agriculture, 164, 104872. https://doi.org/10.1016/J.COMPAG.2019.104872
Seleiman, M. F., Almutairi, K. F., Alotaibi, M., Shami, A., Alhammad, B. A. y Battaglia, M. L. (2021). Nano-Fertilization as an Emerging Fertilization Technique: Why Can Modern Agriculture Benefit from Its Use? Plants, 10(2). https://doi.org/10.3390/plants10010002
Sheehan, J. J. (2014). Biofuels and sustainable development: Perspectives on the farm and around the globe. Obtenido de Tesis Doctoral. University of Minnesota: https://conservancy.umn.edu/handle/11299/163024
Snyder, C. S., Bruulsema, T. W., Jensen, T. L., y Fixen, P. E. (2009). Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Obtenido de Agric. Ecosyst. Environ. 133, 247–266 (2009): https://www.sciencedirect.com/science/article/pii/S0167880909001297
Socchiuzzi, S., Basualdo, A. y Boragno, S. (2018). Mapas de áreas aptas para cultivos de secano en Argentina. Reunión Argentina de Agrometeorología, Merlo, San Luis, Argentina. Oficina de Riesgo Agropecuario, Secretaría de Agroindustria, Ministerio de Producción y Trabajo.
Song, Z., Feng, X., Lal, R., Fan, M., Ren, J., Qi, H., Qian, C., Guo, J., Cai, H., Cao, T., Yu, Y., Hao, Y., Huang, X., Deng, A., Zheng, C., Zhang, J. y Zhang, W. (2019). Optimized agronomic management as a double-win option for higher maize productivity management as a double-win option for higher maize productivity and less global warming intensity: A case study of Northeastern China. Advances in Agronomy, 157, 251-292. https://doi.org/10.1016/bs.agron.2019.04.002
Thapa, R., Chatterjee, A., Awale, R., McGranahan, D. A. y Daigh, A. (2016). Effect of enhanced efficiency fertilizers on nitrous oxide emissions and crop yields: A meta‐analysis. Soil Science Society of America Journal, 80(5), 1121-1134. https://doi.org/10.2136/sssaj2016.06.0179
Trovo-Garofalo, D. F., Novaes, R. M., Ricardo A.A. Pazianotto, V. G.-M., Brandão, M., Zanin-Shimbo, J., y Folegatti-Matsuura, M. I. (2022). Land-use change CO2 emissions associated with agricultural products at municipal level in Brazil. Obtenido de Journal of Cleaner Production, Volume 364, 2022, 132549, ISSN 0959-6526: https://doi.org/10.1016/j.jclepro.2022.132549
Wang, H., Yang, Y., Zhang, X. y Tian, G. (2015). Carbon footprint analysis for mechanization of maize production based on life cycle assessment: A case study in Jilin Province, China. Sustainability, 7(11), 15772-15784. https://doi.org/10.3390/su71115772
Xu, X. y Lan, Y. (2016). Spatial and temporal patterns of carbon footprints of grain crops in China. Journal of Cleaner Production, 146, 218–227. https://doi.org/10.1016/j.jclepro.2016.11.181
Yan, M., Cheng, K., Luo, T., Yan, Y., Pan, G. y Rees, R. M. (2015). Carbon footprint of grain crop production in China - Based on farm survey data. Journal of Cleaner Production, 104, 130-138. https://doi.org/10.1016/j.jclepro.2015.05.058
Zhang, L., Zhang, W., Cui, Z., Hu, Y., Schmidhalter, U. y Chen, X. (2021). Environmental, human health, and ecosystem economic performance of long-term optimizing nitrogen management for wheat production. Journal of Cleaner Production, 311, 127620. https://doi.org/10.1016/J.JCLEPRO.2021.127620
Zhang, W., He, X., Zhang, Z., Gong, S., Zhang, Q., Zhang, W., Liu, D., Zou, C. y Chen, X. (2018). Carbon footprint assessment for irrigated and rainfed maize (Zea mays L.) production on the Loess Plateau of China. Biosystems Engineering, 167, 75-86. https://doi.org/10.1016/j.biosystemseng.2017.12.008
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2023 Rodolfo Bongiovanni, Leticia Tuninetti, Gabriel Espósito, Silvina Fiant, Karen Ponieman, Santiago Álvarez, Nicolás Chiappero, Nicolás Oliverio
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.