GULLY EROSION IN THE ROLLING PAMPA: 50 YEARS OF EVOLUTION IN THE ARROYO DEL TALA BASIN

Authors

Keywords:

severe water erosion, runoff, remote sensing, gully denisty

Abstract

Classical and ephemeral gully erosion represents the most extreme manifestation of water erosion processes. This phenomenon significantly alters and fragments the landscape, leading to increased operational production costs. This study evaluates the dynamics of gully erosion in the Arroyo del Tala basin (San Pedro, Buenos Aires), representative of the Rolling Pampa. The objectives were: a) to monitor gully erosion evolution between 1968 and 2019, and b) to estimate the current erosive activity of gullies in two contrasting sectors representative of the basin's physiography. The Los Patricios (LP) sector is characterized by gentler, yet longer slopes, whereas the La Esperanza (LE) sector features steeper slopes. Using a semi-detailed scale, the quantity, length, and density of gullies were identified for the years 1968 and 1981 through aerial photographs. These data were compared with a 2019 base map of gullies, which was generated through high-resolution satellite imagery and validated through field observations. The morphometric characteristics of 33 gullies were surveyed in both sectors, and the maximum flow velocity and discharge in the channel were estimated to determine the erosive activity. Gully advance has been continuous in both sectors over the past 50 years. In 1968, LP had an intermediate gully density (0.01-0.05 km km-2), which increased to a high density (0.5-1 km km-2) by 1981 and reached an extremely high density (>1 km km-2) in 2019. LE started with a high gully density, which persisted until 1981, reaching an extremely high density in 2019. The erosive process remains active in both sectors. However, LE exhibits a more active and developed drainage network due to its higher geomorphic energy. Results indicate that gully erosion in the study area is active and ongoing, highlighting the need to study influencing factors in the process and to identify susceptible areas.

References

Ackerman, G., De Pietri, D. E., y Santanatoglia, O. J. (2000). Detección de áreas con diferente vulnerabilidad a erosionarse a partir de la morfodinámica del paisaje. Revista Facultad de Agronomía, 20, 235-243.

Arcement, G. J., y Schneider, V. R. (1989). Guide for selecting Manning's roughness coefficients for natural channels and flood plains (No. 2339). USGPO; For sale by the Books and Open-File Reports Section, US Geological Survey.

Ares, M. G., Bongiorno, F., Holzman, M., Chagas, C., Varni, M., y Entraigas, I. (2016). Water erosion and connectivity analysis during a year with high precipitations in a watershed of Argentina. Hydrology Research, 47(6), 1239–1252. https://doi.org/10.2166/nh.2016.179

Bujan, A., Santanatoglia, O. J., Chagas, C., Massobrio, M., Castiglioni, M., Yañez, M., Ciallella, H. y Fernandez, J. (2003). Soil erosion evaluation in a small basin through the use of 137Cs technique. Soil and Tillage Research, 69(1-2), 127-137. https://doi.org/10.1016/S0167-1987(02)00134-4

Casalí, J., Loizu, J., Campo, M. A., de Santisteban, L. M., y Álvarez-Mozos, J. (2006). Accuracy of methods for field assessment of rill and ephemeral gully erosion. Catena, 67(2), 128–138. https://doi.org/10.1016/j.catena.2006.03.005

Castiglioni, M., Fernandez Moritan, M., Massobrio, M., Chagas, C., Palacín, E., y Santanatoglia, O. (2009). Efecto de la forma y el relieve de microcuencas de Pampa Ondulada sobre su producción de sedimentos. XXII Congreso Nacional del Agua. 11 al 14 de noviembre de 2009. Trelew.

Chagas, C. I. y Kraemer, F. B. (2018). Escurrimiento, erosión del suelo y contaminación de los recursos hídricos superficiales por sedimentos asociados a la actividad agropecuaria extensiva: algunos elementos para su análisis. Editorial de la Facultad de Agronomía UBA. Archivo Digital: descarga y online. 34 pp.

Chagas, C. I., y Santanatoglia, O. J. (2016). Uso de la tierra y procesos degradatorios en una cuenca representativa de la Pampa Ondulada. En N. M. B. do Amaral Sobrinho, C. I. Chagas y E. Zonta (Eds.), Impactos ambientais provenientes da produção agrícola: Experiências Argentinas e Brasileiras (pp. 97-118). Livre Expressão Realizando Sonhos. Enriquecendo Vidas

Chagas, C., Santanatoglia, O., Castiglioni, M., Massobrio, Palacín, E., Kraemer, F., y Bujan, A. (21-24 de septiembre de 2010b). Comparación del escurrimiento de dos microcuencas agrícolas de Pampa Ondulada con diferente energía geomórfica, durante un período húmedo [Trabajo expandido]. Primer Congreso Internacional de Hidrología de Llanuras, Azul, Buenos Aires, Argentina.

Chagas, C., Santanatoglia, O., Moretton, J., Paz, M., y Behrends Kraemer, F. (2010a). Movimiento superficial de contaminantes biológicos de origen ganadero en la red de drenaje de una cuenca de Pampa Ondulada. Ciencia del suelo 28:23-31.

Chow, V.T., Maidment, D., y Mays, L., 1994. Hidrología aplicada [Applied Hydrology]. Santafé de Bogotá: McGraw Hill.

Cisneros, J., Cholaky, C., Gutiérrez, A. C., González, J., Reynero, M., Diez, A., y Bergesio, L. (2012). Erosión hídrica: principios y técnicas de manejo. UniRío.

Denoia, J., y Ruiz, A. (2014). La erosión en cárcavas en áreas de llanura. Material de apoyo didáctico. Especialidad Manejo de Tierras. Facultad de Ciencias Agrarias U.N.R.

Dong, Y., Wu, Y., Qin, W., Guo, Q., Yin, Z., y Duan, X. (2019). The gully erosion rates in the black soil region of northeastern China: Induced by different processes and indicated by different indexes. Catena, 182. 104146. https://doi.org/10.1016/j.catena.2019.104146

Frankl, A., Poesen, J., Deckers, J., Haile, M., y Nyssen, J. (2012). Gully head retreat rates in the semi-arid highlands of Northern Ethiopia. Geomorphology, 173–174, 185–195. https://doi.org/10.1016/j.geomorph.2012.06.011

Geyik, M. P. (1986). FAO watershed management field manual. Gully control. Based on the work of MP Geyik. FAO Conservation Guide (FAO). no. 13/2.

Golosov, V., Yermolaev, O., Rysin, I., Vanmaercke, M., Medvedeva, R., y Zaytseva, M. (2018). Mapping and spatial-temporal assessment of gully density in the Middle Volga region, Russia. Earth Surface Processes and Landforms, 43(13), 2818–2834. https://doi.org/10.1002/esp.4435

Govers, G. (1991). Rill erosion on arable land in central Belgium: rates, controls and predictability. Catena, 18, 133–155. https://doi.org/10.1016/0341-8162(91)90013-N

Hayas, A., Poesen, J., y Vanwalleghem, T. (2017). Rainfall and Vegetation Effects on Temporal Variation of Topographic Thresholds for Gully Initiation in Mediterranean Cropland and Olive Groves. Land Degradation and Development, 28(8), 2540–2552. https://doi.org/10.1002/ldr.2805

Irurtia, C, Berón, R, Costamagna, C y Glave, A (1988) Provincia de BsAs. En: W. Kugler, A. Cantero, R. Capurro, A. Glave y J. L. Panigatti (Eds) El deterioro del ambiente en Argentina 2da ed. (pp. 55-64). Editorial FECIC, PROSA.

Knapen, A., Poesen, J., Govers, G., Gyssels, G., y Nachtergaele, J. (2007). Resistance of soils to concentrated flow erosion: A review. Earth-Science Reviews, 80(1–2), 75–109. https://doi.org/10.1016/j.earscirev.2006.08.001

Kraemer, F. B., Chagas, C. I., Marré, G., Palacín, E. A., y Santanatoglia, O. J. (2013). El desplazamiento de la ganadería por la agricultura en una cuenca de la pampa ondulada: efectos sobre el escurrimiento superficial y erosión hídrica. Ciencia del Suelo, 31(1):83-92.

Liu, H., Hörmann, G., Qi, B., y Yue, Q. (2020). Using high-resolution aerial images to study gully development at the regional scale in southern China. International Soil and Water Conservation Research, 8(2), 173–184. https://doi.org/10.1016/j.iswcr.2020.03.004

Microsoft. Corporation (2019). Bing Aerial Imagery [Base de mapa]. QGIS. https://www.bing.com/maps

Nearing, M. A., Pruski, F. F., y O'neal, M. R. (2004). Expected climate change impacts on soil erosion rates: a review. Journal of Soil and Water Conservation, 59(1), 43-50.

Ongley, E. D. (1997). Lucha contra la contaminación agrícola de los recursos hídricos. En Estudio FAO Riego y Drenaje-55, GEMS/Water Collaborating Center Canada Center for Inland Waters, (pp. 21-37). FAO

Torri, D., y Poesen, J. (2014). A review of topographic threshold conditions for gully head development in different environments. Earth-Science Reviews, 130, 73–85. https://doi.org/10.1016/j.earscirev.2013.12.006

Vangeli, S. (2019). El avance de la agricultura en tierras con características hidro-halomórficas bajo uso de pastizal: su efecto sobre algunas propiedades edáficas y la calidad del agua de escurrimiento [Tesis de maestría]. Universidad de Buenos Aires. Facultad de Agronomía. Escuela para Graduados.

Vandekerckhove, L., Poesen, J., y Govers, G. (2003). Medium-term gully headcut retreat rates in Southeast Spain determined from aerial photographs and ground measurements. Catena, 50(2-4), 329-352. https://doi.org/10.1016/S0341-8162(02)00132-7

Vanmaercke, M., Poesen, J., van Mele, B., Demuzere, M., Bruynseels, A., Golosov, V., Bezerra, J. F. R., Bolysov, S., Dvinskih, A., Frankl, A., Fuseina, Y., Guerra, A. J. T., Haregeweyn, N., Ionita, I., Makanzu Imwangana, F., Moeyersons, J., Moshe, I., Nazari Samani, A., Niacsu, L., … Yermolaev, O. (2016). How fast do gully headcuts retreat? Earth-Science Reviews, 154, 336–355. https://doi.org/10.1016/j.earscirev.2016.01.009

Viglizzo, E., y Jobbágy, E. G. (Eds.). (2010). Expansión de la frontera agropecuaria en Argentina y su impacto ecológico-ambiental. Ediciones INTA.

Worcel, L., Maggi, A. E., Vangeli, S., y Chagas, C. I. (2022). Alta densidad de cárcavas en una cuenca representativa de la Pampa Ondulada. Revista Científica Agropecuaria 25 (1): 156-164.

Yang, Y., Zhang, Y., Yu, X., y Jia, G. (2023). Soil microorganism regulated aggregate stability and rill erosion resistance under different land uses. Catena, 228. https://doi.org/10.1016/j.catena.2023.107176

Published

30-12-2024

How to Cite

Worcel, L., Chagas, C. I., & Vangeli, S. (2024). GULLY EROSION IN THE ROLLING PAMPA: 50 YEARS OF EVOLUTION IN THE ARROYO DEL TALA BASIN. Ciencia Del Suelo, 42(2). Retrieved from https://ojs.suelos.org.ar/index.php/cds/article/view/879

Issue

Section

Manejo y Conservación de Suelos y Aguas. Riego y Drenaje