TRANSPORTE DE GLIFOSATO EN DOS SUELOS AGRÍCOLAS DEL ESTE DE SANTIAGO DEL ESTERO, ARGENTINA

Autores

  • Laura Inés Mas Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Quimilí, Santiago del Estero, Argentina https://orcid.org/0009-0009-8082-9794
  • Margarita María Alconada Magliano Facultad de Ciencias Agrarias y Forestales - Universidad Nacional de La Plata
  • Virginia Carolina Aparicio Estación Experimental Agropecuaria INTA Balcarce https://orcid.org/0000-0001-8139-1354

DOI:

https://doi.org/10.64132/cds.v43i1.873

Palavras-chave:

flujo preferencial, siembra directa, perfil de suelo, disipación

Resumo

El glifosato puede lixiviar con el agua de drenaje a capas más profundas del suelo. Con el objetivo de evaluar el riesgo de contaminación del agua subterránea con glifosato en dos suelos del este de Santiago del Estero, se realizó un ensayo con columnas de suelo sin disturbar de los horizontes A, Bt1, Bt2 y Ck de un Argiustol ácuico y A, AC y C de un Haplustol éntico. Las curvas de paso de glifosato se ajustaron con el paquete CXTFIT, utilizando como base los parámetros velocidad (v) y coeficiente de dispersión (D) obtenidos previamente del ensayo de transporte de un soluto inerte. Se determinó el factor de retardo (R), la fracción de retardo instantáneo de soluto (β) y el coeficiente de transferencia de masa entre fases (ω). Luego del ensayo se cuantificó el glifosato y ácido aminometilfosfónico (AMPA) retenido en las columnas y se realizó un balance para determinar porcentajes de lixiviación, retención y disipación. La lixiviación fue muy limitada y variable entre las columnas de cada horizonte. La aparición temprana del glifosato en los efluentes fue un indicador de flujo preferencial, mientras que las curvas asimétricas, los picos de concentración a valores mayores a 1 volumen de poros y un factor de retardo muy superior a 1 indicaron condiciones de no equilibrio químico. La adsorción fue más importante que la lixiviación y se comprobó una mayor retención de glifosato total en el Argiustol ácuico. Finalmente, la mayor parte del glifosato aplicado no se encontró en los lixiviados ni retenido en las columnas, sino que se disipó durante el ensayo. Esto podría deberse a la formación de residuos no extractables o la mineralización completa del herbicida.

Referências

Aapresid. (2020). Evolución de Siembra Directa en Argentina, Campaña 2019-2020. https://www.aapresid.org.ar/archivos/evolucion-siembra-directa2019-2020.pdf

Aitchison, J. (1986). The statistical analysis of compositional data. Monographs on Statistics and Applied Probability. Chapman & Hall Ltd., London.

Al-Rajab, A. J., Amellal, S., y Schiavon, M. (2008). Sorption and leaching of 14C-glyphosate in agricultural soils. Agronomy for Sustainable Development, 28(3), 419–428. https://doi.org/10.1051/agro:2008014

Aparicio, V. C., De Gerónimo, E., Marino, D., Primost, J., Carriquiriborde, P., y Costa, J. L. (2013). Environmental fate of glyphosate and aminomethylphosphonic acid in surface waters and soil of agricultural basins. Chemosphere, 93(9), 1866–1873. https://doi.org/https://doi.org/10.1016/j.chemosphere.2013.06.041

Aparicio, V., y De Gerónimo, E. (2024). Pesticide pollution in argentine drinking water: A call to ensure safe access. Environmental Challenges, 14, 100808. https://doi.org/10.1016/J.ENVC.2023.100808

Bedmar, F., Costa, J. L., y Giménez, D. (2008). Column tracer studies in surface and subsurface horizons of two Typic Argiudolls. Soil Science, 173(4), 237–247. https://doi.org/10.1097/SS.0b013e31816a1e42

Bedmar, F., Costa, J. L., Suero, E., y Gimenez, D. (2004). Transport of Atrazine and Metribuzin in Three Soils of the Humid Pampas of Argentina. Weed Technology, 18(1), 1–8. https://doi.org/DOI:10.1614/WT-02-056

Bergström, L., Börjesson, E., y Stenström, J. (2011). Laboratory and Lysimeter Studies of Glyphosate and Aminomethylphosphonic Acid in a Sand and a Clay Soil. Journal of Environmental Quality, 40(1), 98–108. https://doi.org/10.2134/jeq2010.0179

Beven, K., y Germann, P. (2013). Macropores and water flow in soils revisited. Water Resources Research, 49(6), 3071–3092. https://doi.org/https://doi.org/10.1002/wrcr.20156

Boletta, P., Acuña, L., y Juárez De Moya, M. (1989). Análisis de las características climáticas de la Provincia de Santiago del Estero. Convenio INTA -UNSE. Santiago del Estero.

Boletta, P. E., Ravelo, A. C., Planchuelo, A. M., y Grilli, M. (2006). Assessing deforestation in the Argentine Chaco. Forest Ecology and Management, 228(1–3), 108–114. https://doi.org/10.1016/j.foreco.2006.02.045

Bolsa de Cereales de Buenos Aires. (2018). Relevamiento de Tecnología Aplicada: Campaña 2017/2018.

Bolsa de Cereales de Buenos Aires. (2024). Relevamiento de Tecnología Agrícola Aplicada. https://www.bolsadecereales.com/tecnologia-informes

Borggaard, O. K., y Gimsing, A. L. (2008). Fate of glyphosate in soil and the possibility of leaching to ground and surface waters: a review. Pest Management Science, 64, 441–456. https://doi.org/10.1002/ps.1512

Bressan, E. M. (2013). Interacciones entre propiedades físicas y composición mineralógica y granulométrica de suelos Argiudoles de la Pampa Ondulada. Tesis de Maestría, Facultad de Agronomía – Universidad de Buenos Aires. https://repositorio.inta.gob.ar/handle/20.500.12123/6272?locale-attribute=en

Candela, L., Álvarez-Benedí, J., Condesso de Melo, M. T., y Rao, P. S. (2007). Laboratory studies on glyphosate transport in soils of the Maresme area near Barcelona, Spain: Transport model parameter estimation. Geoderma, 140(1–2), 8–16. https://doi.org/10.1016/j.geoderma.2007.02.013

Caprile, A. C., Aparicio, V. C., Portela, S. I., Sasal, M. C., y Andriulo, A. E. (2017). Drenaje y transporte vertical de herbicidas en dos molisoles de la pampa ondulada Argentina. Ciencia Del Suelo, 35(1), 147–159. https://www.suelos.org.ar/publicaciones/v35n1-html/vol35-n1-html/v35n1a13.htm

Cey, E. E., y Rudolph, D. L. (2009). Field study of macropore flow processes using tension infiltration of a dye tracer in partially saturated soils. Hydrological Processes, 23(12), 1768–1779. https://doi.org/https://doi.org/10.1002/hyp.7302

Comas-Cufí, M., y Thió-Henestrosa, S. (2011). CoDaPack 2.0: a stand-alone, multi-platform compositional software. En J. J. Egozcue, R. Tolosana-Delgado, y M. I. Ortego (Eds.), Proceedings of the 4th International Workshop on Compositional Data Analysis. http://congress.cimne.com/codawork11/Admin/Files/FilePaper/p28.pdf

Conyers, M. K., y Davey, B. G. (1988). Observations on some routine methods for soil pH determination. Soil Science, 145(1), 29–36.

Coupe, R. H., Kalkhoff, S. J., Capel, P. D., y Gregoire, C. (2011). Fate and transport of glyphosate and aminomethylphosphonic acid in surface waters of agricultural basins. Pest Management Science, 68(1), 16–30. https://doi.org/10.1002/ps.2212

Cueff, S., Alletto, L., Bourdat-Deschamps, M., Benoit, P., y Pot, V. (2020). Water and pesticide transfers in undisturbed soil columns sampled from a Stagnic Luvisol and a Vermic Umbrisol both cultivated under conventional and conservation agriculture. Geoderma, 377, 114590. https://doi.org/10.1016/J.GEODERMA.2020.114590

Dalton, H., Stirling, D. I., Quayle, J. R., Higgins, I. J., Quayle, J. R., y Bull, A. T. (1997). Co-metabolism. Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 297(1088), 481–496. https://doi.org/10.1098/rstb.1982.0056

De Gerónimo, E., Aparicio, V. C., y Costa, J. L. (2018). Glyphosate sorption to soils of Argentina. Estimation of affinity coefficient by pedotransfer function. Geoderma, 322, 140–148. https://doi.org/10.1016/j.geoderma.2018.02.037

De Gerónimo, E., Lorenzón, C., Iwasita, B., y Costa, J. L. (2018). Evaluation of Two Extraction Methods to Determine Glyphosate and Aminomethylphosphonic Acid in Soil. Soil Science, 183(1), 34–40. https://doi.org/10.1097/ss.0000000000000225

Di Rienzo, J. A., Casanoves, F., Balzarini, M. G., Gonzalez, L., Tablada, M., y Robledo, C. W. (2020). InfoStat versión 2020 (versión 20). Universidad Nacional de Córdoba.

Di Rienzo, J. A., Guzman, A. W., y Casanoves, F. (2002). A multiple-comparisons method based on the distribution of the root node distance of a binary tree. Journal of Agricultural, Biological, and Environmental Statistics, 7(2), 129–142. https://doi.org/10.1198/10857110260141193

Dousset, S., Chauvin, C., Durlet, P., y Thévenot, M. (2004). Transfer of hexazinone and glyphosate through undisturbed soil columns in soils under Christmas tree cultivation. Chemosphere, 57(4), 265–272. https://doi.org/10.1016/j.chemosphere.2004.06.007

Dousset, S., Jacobson, A., Dessogne, J. B., Guichard, N., Baveye, P. C., y Andreux, F. (2007). Facilitated Transport of Diuron and Glyphosate in High Copper Vineyard Soils. Environmental Science & Technology, 41(23), 8056–8061. https://doi.org/10.1021/es071664c

Ersahin, S., Papendick, R. I., Smith, J. L., Keller, C. K., y Manoranjan, V. S. (2002). Macropore transport of bromide as influenced by soil structure differences. Geoderma, 108(3), 207–223. https://doi.org/10.1016/S0016-7061(02)00131-3

Fomsgaard, I. S., Spliid, N. H. H., y Felding, G. (2003). Leaching of Pesticides Through Normal-Tillage and Low-Tillage Soil - A Lysimeter Study. II. Glyphosate. Journal of Environmental Science and Health, Part B, 38(1), 19–35. https://doi.org/10.1081/PFC-120016603

Gjettermann, B., Petersen, C. T., Koch, C. B., Spliid, N. H., Grøn, C., Baun, D. L., y Styczen, M. (2009). Particle-facilitated Pesticide Leaching from Differently Structured Soil Monoliths. Journal of Environmental Quality, 38(6), 2382–2393. https://doi.org/10.2134/jeq2008.0417

Gómez Ortiz, A. M., Okada, E., Bedmar, F., y Costa, J. L. (2017). Sorption and desorption of glyphosate in Mollisols and Ultisols soils of Argentina. Environmental Toxicology and Chemistry, 36(10), 2587–2592. https://doi.org/https://doi.org/10.1002/etc.3851

Gonzalo Mayoral, E., Aparicio, V. C., De Gerónimo, E., y Costa, J. L. (2021). Metsulfuron-methyl and glyphosate transport in a mollisol soil in the Pampean region of Argentina. Soil & Environment, 40(2), 127–140. http://dx.doi.org/10.25252/SE/2021/202578

Gonzalo Mayoral, E. S., Aparicio, V. C., De Gerónimo, E., Fernandes, G., Rheinheimer dos Santos, D., y Costa, J. L. (2022). Glyphosate, AMPA, and metsulfuron-methyl retention in the main horizons of a Typic Argiudoll. Journal of Environmental Science and Health, Part B, 57(7), 526–540. https://doi.org/10.1080/03601234.2022.2069982

Gros, P., Meissner, R., Wirth, M. A., Kanwischer, M., y Rupp, H. (2020). Leaching and degradation of 13C2-15N-glyphosate in field lysimeters. Environmental Monitoring and Assessment, 192, 127. https://doi.org/10.1007/s10661-019-8045-4

Jury, W. A., y Roth, K. (1990). Evaluating the Role of Preferential Flow on Solute Transport Through Unsaturated Field Soils. En K. Roth, W. A. Jury, H. Flühler, y J. C. Parker (Eds.), Field-Scale Water and Solute Flux in Soils (pp. 23–28). Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-9264-3_5

Kirkham, M. B. (2014). Pore Volume. In Principles of Soil and Plant Water Relations (pp. 229–241). Elsevier. https://doi.org/10.1016/b978-0-12-420022-7.00014-8

Kjær, J., Ernsten, V., Jacobsen, O. H., Hansen, N., De Jonge, L. W., y Olsen, P. (2011). Transport modes and pathways of the strongly sorbing pesticides glyphosate and pendimethalin through structured drained soils. Chemosphere, 84(4), 471–479. https://doi.org/10.1016/j.chemosphere.2011.03.029

Kjær, J., Olsen, P., Ullum, M., y Grant, R. (2005). Vadose Zone Processes and Chemical Transport Leaching of Glyphosate and Amino-Methylphosphonic Acid from Danish Agricultural Field Sites. Journal of Environmental Quality, 34, 608–620. https://doi.org/10.2134/jeq2005.0608

Kjær, J., Ullum, M., Olsen, P., Sjelborg, P., Helweg, A., Mogensen, B., Plauborg, F., Grant, R., Fomsgaard, I., y Brüsch, W. (2003). The Danish Pesticide Leaching Assessment Programme: Monitoring Results May 1999-June 2002. https://www.vap.dk/wp-content/uploads/Rapporter/2002/Monitoring-results-May-1999%E2%80%93June-2002.pdf

Kjaergaard, C., Poulsen, T. G., Moldrup, P., y De Jonge, L. W. (2004). Colloid Mobilization and Transport in Undisturbed Soil Columns. I. Pore Structure Characterization and Tritium Transport. Vadose Zone Journal, 3(2), 413–423. https://doi.org/https://doi.org/10.2136/vzj2004.0413

Koritko, L. M., Suárez, R. A., Anriquez, A. L., Pece, M., y Albanesi, A. S. (2019). Efecto de la siembra directa en la estabilización del carbono orgánico del suelo a escala de sitio en Santiago del Estero, Argentina. Revista Agronómica Del Noroeste Argentino, 39(1), 9–18. http://www.scielo.org.ar/pdf/ranar/v39n1/v39n1a01.pdf

Landry, D., Dousset, S., Fournier, J. C., y Andreux, F. (2005). Leaching of glyphosate and AMPA under two soil management practices in Burgundy vineyards (Vosne-Romanée, 21-France). Environmental Pollution, 138(2), 191–200. https://doi.org/10.1016/j.envpol.2005.04.007

Lei, W., Tang, X., y Zhou, X. (2018). Transport of 3,5,6-trichloro-2-pyrdionl (a main pesticide degradation product) in purple soil: Experimental and modeling. Applied Geochemistry, 88, 179–187. https://doi.org/10.1016/j.apgeochem.2017.07.010

Lewis, K. A., Tzilivakis, J., Warner, D. J., y Green, A. (2016). An international database for pesticide risk assessments and management. Human and Ecological Risk Assessment: An International Journal, 22(4), 1050–1064. https://doi.org/10.1080/10807039.2015.1133242

Lutri, V. F., Matteoda, E., Blarasin, M., Aparicio, V., Giacobone, D., Maldonado, L., Becher Quinodoz, F., Cabrera, A., y Giuliano Albo, J. (2020). Hydrogeological features affecting spatial distribution of glyphosate and AMPA in groundwater and surface water in an agroecosystem, Córdoba, Argentina. Science of the Total Environment, 711, 134557. https://doi.org/10.1016/j.scitotenv.2019.134557

Luzzi, J. I., Aparicio, V. C., De Geronimo, E., Ledda, A., Sauer, V. M., y Costa, J. L. (2024). Degradation of atrazine, glyphosate, and 2,4-D in soils collected from two contrasting crop rotations in Southwest Chaco, Argentina. Journal of Environmental Science and Health, Part B, 59(3), 98–111. https://doi.org/10.1080/03601234.2024.2305596

Magga, Z., Tzovolou, D. N., Theodoropoulou, M. A., Dalkarani, T., Pikios, K., y Tsakiroglou, C. D. (2008). Soil column experiments used as a means to assess transport, sorption, and biodegradation of pesticides in groundwater. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 43(8), 732–741. https://doi.org/10.1080/03601230802388868

Maillard, E., Payraudeau, S., Faivre, E., Grégoire, C., Gangloff, S., y Imfeld, G. (2011). Removal of pesticide mixtures in a stormwater wetland collecting runoff from a vineyard catchment. Science of The Total Environment, 409(11), 2317–2324. https://doi.org/10.1016/J.SCITOTENV.2011.01.057

Marín-Benito, J. M., Brown, C. D., Herrero-Hernández, E., Arienzo, M., Sánchez-Martín, M. J., y Rodríguez-Cruz, M. S. (2013). Use of raw or incubated organic wastes as amendments in reducing pesticide leaching through soil columns. Science of the Total Environment, 463–464, 589–599. https://doi.org/10.1016/j.scitotenv.2013.06.051

Marín-Benito, J. M., Sánchez-Martín, M. J., Ordax, J. M., Draoui, K., Azejjel, H., y Rodríguez-cruz, M. S. (2018). Organic sorbents as barriers to decrease the mobility of herbicides in soils. Modelling of the leaching process. Geoderma, 313, 205–216. https://doi.org/10.1016/j.geoderma.2017.10.033

Martínez Cordón, M. J., Castañeda, M. I. A., y Dallos, J. A. G. (2015). Modelación matemática del transporte de oxadixyl en suelos de cultivo de cebolla. Revista Ambiente & Água, 10, 327–337. https://doi.org/10.4136/ambi-agua.1565

Mas, L. I., Aparicio, V. C., De Gerónimo, E., y Costa, J. L. (2020). Pesticides in water sources used for human consumption in the semiarid region of Argentina. SN Applied Sciences, 2(4), 691. https://doi.org/10.1007/s42452-020-2513-x

McBride, M., y Kung, K.-H. (1989). Complexation of Glyphosate and Related Ligands with Iron (III). Soil Science Society of America Journal, 53(6), 1668–1673. https://doi.org/https://doi.org/10.2136/sssaj1989.03615995005300060009x

McConnell, J. S., y Hossner, L. R. (1985). pH-Dependent adsorption isotherms of glyphosate. Journal of Agricultural and Food Chemistry, 33(6), 1075–1078. https://doi.org/10.1021/jf00066a014

Montoya, J. C., Costa, J. L., Liedl, R., Bedmar, F., y Daniel, P. (2006). Effects of soil type and tillage practice on atrazine transport through intact soil cores. Geoderma, 137(1–2), 161–173. https://doi.org/10.1016/j.geoderma.2006.08.007

Napoli, M., Cecchi, S., Zanchi, C. A., y Orlandini, S. (2015). Leaching of Glyphosate and Aminomethylphosphonic Acid through Silty Clay Soil Columns under Outdoor Conditions. Journal of Environmental Quality, 44(5), 1667–1673. https://doi.org/10.2134/jeq2015.02.0104

Okada, E., Costa, J. L., y Bedmar, F. (2016). Adsorption and mobility of glyphosate in different soils under no-till and conventional tillage. Geoderma, 263, 78–85. https://doi.org/10.1016/j.geoderma.2015.09.009

Okada, E., Costa, José. L., Bedmar, F., Barbagelata, P., Irizar, A., y Rampoldi, E. A. (2014). Effect of conventional and no-till practices on solute transport in long term field trials. Soil and Tillage Research, 142, 8–14. https://doi.org/https://doi.org/10.1016/j.still.2014.04.002

Okada, E., Pérez, D., De Gerónimo, E., Aparicio, V. C., Massone, H., y Costa, J. L. (2018). Non-point source pollution of glyphosate and AMPA in a rural basin from the southeast Pampas, Argentina. Environmental Science and Pollution Research, 25(15), 15120–15132. https://doi.org/10.1007/s11356-018-1734-7

Padilla, J. T., y Selim, H. M. (2018). Glyphosate transport in two louisiana agricultural soils: Miscible displacement studies and numerical modeling. Soil Systems, 2(3), 1–18. https://doi.org/10.3390/soilsystems2030053

Pampas Group. (2015). Estudio de Mercado 2014 de Productos de Protección de Cultivos. http://www.casafe.org/pdf/2018/ESTADISTICAS/Informe-Mercado-Fitosanitarios-2014.pdf

Parker, J. C., y van Genuchten, M. T. (1984). Determining Transport Parameters from Laboratory and Field Tracer Experiments. Virginia Agricultural Experiment Station Bulletin, 84–3, 1–96.

Peña Zubiate, C. A., y Maldonado Pinedo, D. (1979). Carta de suelos del centro este de Santiago del Estero (compilación) - Escala 1:500.000. Convenio INTA - Gobierno de la Provincia de Santiago del Estero para el Desarrollo Agropecuario de la Región Centro-este.

Pignatello, J. J. (1999). The Measurement and Interpretation of Sorption and Desorption Rates for Organic Compounds in Soil Media. Advances in Agronomy, 69, 1–73. https://doi.org/10.1016/S0065-2113(08)60946-3

Porfiri, C., Montoya, J. C., Koskinen, W. C., y Azcarate, M. P. (2015). Adsorption and transport of imazapyr through intact soil columns taken from two soils under two tillage systems. Geoderma, 251–252, 1–9. https://doi.org/10.1016/j.geoderma.2015.03.016

Portocarrero, R., Aparicio, V. C., De Gerónimo, E., y Costa, J. L. (2019). Soil properties of sugarcane fields controlling triazine leaching potential. Soil Research, 57(7), 729–737. https://doi.org/10.1071/SR18342

Qiu, D., Xu, R., Wu, C., Mu, X., Zhao, G., y Gao, P. (2023). Effects of vegetation restoration on soil infiltrability and preferential flow in hilly gully areas of the Loess Plateau, China. CATENA, 221, 106770. https://doi.org/10.1016/J.CATENA.2022.106770

Richards, L. A. (1954). Diagnosis and Improvement of Saline Alkali Soils. US Department of Agriculture. Agricultural Handbook No. 60, Washington DC.

Rodríguez, R., Martines-Landa, L., Candela, L., y Sánchez Vila, X. (2006). Modelos de flujo y transporte de solutos en los medios porosos: Aplicaciones prácticas. En R. Rodríguez, Á. García-Cortés, y R. R. Fernández (Eds.), Los residuos minero-metalúrgicos en el medio ambiente (pp. 473–516).

Secretaría de Bioeconomía. (2024). Estimaciones Agrícolas. https://www.magyp.gob.ar/sitio/areas/estimaciones/

Shaw, J. N., West, L. T., Radcliffe, D. E., y Bosch, D. D. (2000). Preferential Flow and Pedotransfer Functions for Transport Properties in Sandy Kandiudults. Soil Science Society of America Journal, 64(2), 670–678. https://doi.org/10.2136/sssaj2000.642670x

Sheals, J., Sjöberg, S., y Persson, P. (2002). Adsorption of glyphosate on goethite: Molecular characterization of surface complexes. Environmental Science and Technology, 36(14), 3090–3095. https://doi.org/10.1021/es010295w

Simonsen, L., Fomsgaard, I. S., Svensmark, B., y Spliid, N. H. (2008). Fate and availability of glyphosate and AMPA in agricultural soil. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 43(5), 365–375. https://doi.org/10.1080/03601230802062000

Šimůnek, J., van Genuchten, M. Th., Šejna, M., Toride, N., y Leij, F. J. (1999). The STANMOD computer software for evaluating solute transport in porous media using analytical solutions of convection-dispersion equation, Versions 1.0 and 2.0.

Soil Conservation Service. (1972). Soil survey laboratory methods and procedures for collecting soil samples. Soil Survey Investigations Report 1.

Soil Survey Staff. (2022). Keys to Soil Taxonomy, 13th edition. USDA Natural Resources Conservation Service.

Sparks D. L. (Ed). (1996). Methods of Soil Analysis. Part 3 - Chemical Methods (D. L. Sparks, A. L. Page, P. A. Helmke, R. H. Loeppert, P. N. Soltanpour, M. A. Tabatabai, C. T. Johnston, y M. E. Sumner, Eds.; ASA, SSSA,).

Subsecretaría de Recursos Hídricos. (2010). Atlas Digital de los Recursos Hídricos Superficiales de la República Argentina.

Tévez, H. R., y dos Santos Afonso, M. (2015). pH dependence of Glyphosate adsorption on soil horizons. Boletín de la Sociedad Geológica Mexicana, 67, 509–516.

Thevenot, M., y Dousset, S. (2015). Compost Effect on Diuron Retention and Transport in Structured Vineyard Soils. Pedosphere, 25(1), 25–36. https://doi.org/10.1016/S1002-0160(14)60073-4

Toride, N., Leij, F. J., y van Genuchten, M. T. (1995). The CXTFIT code for estimating transport parameters from laboratory or field tracer experiments, Version 2.1. En Research Report No 137 (p. 140). Agricultural Research Service, US Department of Agriculture, Riverside, California.

van Genuchten, M. T., Šimunek, J., J. Leij, F., Toride, N., y Šejna, M. (2012). STANMOD: Model Use, Calibration, and Validation. Transactions of the ASABE, 55(4), 1355. https://doi.org/https://doi.org/10.13031/2013.42247

Van Meer, H., y Domínguez, N. J. (2021). Mapas de isolíneas de precipitación de la provincia de Santiago del Estero. Series de datos 1961-2014. http://hdl.handle.net/20.500.12123/9735

Vanderborght, J., y Vereecken, H. (2007). Review of Dispersivities for Transport Modeling in Soils. Vadose Zone Journal, 6(1), 29–52. https://doi.org/10.2136/vzj2006.0096

Vereecken, H. (2005). Mobility and leaching of glyphosate: a review. Pest Management Science, 61(12), 1139–1151. https://doi.org/10.1002/ps.1122

Vizgarra, L. A., Mas, L. I., Moretti, L. M., Contreras, J., Schefer, E. C., Faule, L., Lanfranco, M., Escobar, D. C., Cejas, P. D., Salas, D. G., Linch, M. A., Tamer, A. R., Continelli, N. M., Cáceres, J. de D., Rodríguez, D. M., Schulz, G. A., Renaudeau, S., Giménez, R., Puig, O., … Lagos, M. (2023). Cartografía de Suelos y Evaluación de Tierras del sector Norte del Departamento Belgrano – Santiago del Estero (L. A. Vizgarra y L. I. Mas, Eds.). https://www.argentina.gob.ar/sites/default/files/2024/03/carta_suelos_n_belgrano_informe-final.pdf

Walkley, A., y Black, I. A. (1934). An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, 37(1), 29–38.

Zhao, B., Zhang, J., Gong, J., Zhang, H., y Zhang, C. (2009). Glyphosate mobility in soils by phosphate application: Laboratory column experiments. Geoderma, 149(3–4), 290–297. https://doi.org/10.1016/j.geoderma.2008.12.006

Publicado

27-06-2025

Como Citar

Mas, L. I., Alconada Magliano, M. M., & Aparicio, V. C. (2025). TRANSPORTE DE GLIFOSATO EN DOS SUELOS AGRÍCOLAS DEL ESTE DE SANTIAGO DEL ESTERO, ARGENTINA. Ciencia Del Suelo, 43(1), 131–149. https://doi.org/10.64132/cds.v43i1.873

Edição

Seção

Contaminación del Suelo y Calidad del Medio Ambiente