ECOLOGICAL INTENSIFICATION DECREASED YIELD-SCALED N2O EMISSIONS IN A SOYBEAN-BARLEY-MAIZE SEQUENCE

Autores/as

  • Sheila Mailén Casanave Ponti
  • Cecilia del Carmen Videla Universidad Nacional de Mar del Plata
  • Roberto Rizzalli
  • María Gloria Monterubbianesi
  • Fernando Oscar García
  • Facundo Ortega
  • Fernando Héctor Andrade

Palabras clave:

impacto ambiental, rotaciones de cultivos, árbol de regresiones

Resumen

 Agricultural challenge today is to maximize crop production reducing negative environmental impacts by efficiently use of resources and inputs. Objectives: i) to evaluate N2O emissions during a soybean-bar­ley-maize rotation and their respective interperiods -chemical fallows (ChF) and cover crops (CC)-, and ii) to understand the relationships between N2O flow rates with soil mineral N content (Nmin), water-filled porous space (WFPS), and soil temperature (ST). N2O emissions were evaluated weekly under two management systems, ecological intensification (EI) and farmer current practices (FP). EI included higher N rates than FP, split N application, a cover crop (CC) after barley, among other management practices. Simultaneously to N2O emissions, Nmin, WFPS and ST were determined. The N2O fluxes were highest during crop periods (9-43, 6-61 and 4-104 μg N2O-N m-2 h-1, for soybean, barley and maize, respectively), intermediate during barley-maize interperiod (2-47 and 3-35 μg N2O-N m-2 h-1, for CC and ChF, respectively) and lowest during ChF of maize-soybean and soybean-barley interperiods (1-26 and 5-22 μg N2O-N m-2 h-1, respectively). Re­gression tree provided threshold splits for the effect of soil variables on emission rates: 7.4 mg N kg-1 for Nmin; 10.35 or 8.7°C for ST, depending on Nmin and WPFS values; 39.6 and 55.4 % for WPFS, both with high N. There were no significant differences in accumulated N2O emissions between management systems for the complete sequence (3050 and 3380 g N2O-N ha-1, for EI and FP, respectively). Yield-based N2O emissions for the complete sequence were lower for EI than for FP. EI decreased yield-scaled N2O emissions by 29% for soybean (p<0.05) and barley (ns) and by 30% for maize (p<0.05) compared with FP. In conclusion for the complete sequence, the EI system did not increase N2O emissions per unit area and reduced emissions per unit yield despite utilizing higher N rates and including a CC.

 

Biografía del autor/a

Cecilia del Carmen Videla, Universidad Nacional de Mar del Plata

Profesora asociada Edafología Agrícola

Departamento de Producción Vegetal, Suelos e Ingeniería Rural (PVSIR)

Facultad de Ciencias Agrarias

Citas

Adviento-Borbe, M.A.A., Haddix, M.L., Binder, D.L., Walters, D.T. & Dobermann, A. (2007). Soil greenhouse gas fluxes and global warming potential in four high-yielding maize systems. Global Change Biology, 13, 1972-1988.

Alvarez, C., Costantini, A., Alvarez, C.R., Alves, B.J.R., Jantalia, C.P., Martellotto, E.E., & Urquiaga, S. (2012). Soil nitrous oxide emissions un¬der different management practices in the semiarid region of the Argentinian Pampas. Nutrient Cycling in Agroecosystems, 94, 209-220.

Andrade, F.H. (1995). Analysis of growth and yield of maize, sunflower and soybean grown at Balcarce, Argentina. Field Crops Research 41, 1-12.

Andrade, F.H. (2020). Los desafíos de la agricultura global. Ediciones INTA. Buenos Aires, Argentina. 242pp.

Aramburu Merlos, F., Monzon, J.P., Mercau, J.L., Taboada, M., Andrade, F.H., Hall, A.J., Jobbagy, E., Cassman, K.G. & Grassini, P. (2015). Potential for crop production increase in Argentina through closure of existing yield gaps. Field Crops Research, 184, 145-154.

Arias-Navarro, C.; Díaz-Pinés, E., Klatt, E., Brandt, P., Rufino, M.C., Butterbach-Bahl, K. & Verchot, L.V. (2017). Spatial variability of soil N2O and CO2 fluxes in different topographic positions in a tropical montane forest in Kenya. Journal of Geophysical Research: Biogeoscien¬ces, 122.

Barbieri, P.A., Echeverría, H.E & Sainz Rozas, H.R. (2022). Water availability and row spacing effects on Nitrogen use efficiency in not-till maize. Archives Crop Science, 5(1), 131-140.

Bardgett, R.D. & van der Putten, WH. (2014). Belowground biodiversity and ecosystem functioning. Nature, 515, 505–511.

Barton, L., Wolf, B., Rowlings, D., Scheer, C., Kiese, R., Grace, P., Stefanova, K. & Butterbach-Bahl, K. (2015). Sampling frequency affects estimates of annual nitrous oxide fluxes. Scientific Reports 5. Article Number 15912.

Basche, A.D., Kaspar, F.E., Castellano, T.C. & Miguez, M.J. (2014). Do cover crops increase or decrease nitrous oxide emissions? A me¬ta-analysis. Journal of Soil and Water Conservation, 69, 471-482.

Bateman, E.J. & Baggs, E.M. (2005). Contributions of nitrification and denitrification to N2O emissions from soils at different water-filled pore space. Biology and. Fertility of Soils, 41, 379-388.

Beare, M.H., Gregorich, E.G. & St-Georges, P. (2009). Compaction effects on CO2 and N2O production during drying and rewetting of soil. Soil Biology & Biochemistry, 41, 611-621.

Blake, G.R. & Hartge, K.H. (1986). Bulk density. In: In: Klute, A. (Ed.), Methods of Soil Analysis. Part 1. 2nd Ed. Agron. Monogr., vol. 9. ASA and SSSA, Madison, WI (pp. 363–375).

Breiman L., Friedman J.H., Olshen R.A. & Stone, C.J. (1984). Classification and Regression Trees. Wadsworth International Group, Belmont, California.

Bremner, J.M. & Blackmer, A.M. (1981). Terrestrial nitrification as a source of atmospheric nitrous oxide. En: Delwiche C C (ed.) Denitrifica-tion, Nitrification, and Atmospheric Nitrous Oxide (pp. 151–170). John Wiley & Sons, Inc., New York, USA.

Bremner, J.M. & Mulvaney, C.S. (1982). Total nitrogen. En: A.L. Page (ed.). Methods of soil analysis, 2nd ed. Amer. Soc. Agron., Madison, Wisconsin. Agronomy. 9(2), 595-624

Burzaco, J.P., Smith, D.R. & Vyn, T.J. (2013). Nitrous oxide emissions in Midwest US maize production vary widely with band-injected N fertilizer rates, timing and nitrapyrin presence. Environmental Research Letters, 8, 1-11.

Butterbach-Bahl, K., Baggs, E., Dannenmann, M., Kiese, R. & Zechmeister - Boltenstern, S. (2013). Nitrous oxide emissions from soils: how well do we understand the processes and their controls?. Philosophical Transactions of the Royal Society. Biological Sciences, 368, 20130122.

Cannavo, P., Richaume, A. & Lafolie, F. (2003). Fate of nitrogen and carbon in the vadose zone: in situ and laboratory measurements of seasonal variations in aerobic respiratory and denitrifying activities. Soil Biology & Biochememistry, 36(3), 463-478.

Carpaneto, B. y Abbate, P.E. (2017). Red de evaluación de cultivares de Cebada: Resultados de los ensayos comparativos de rendimiento de INTA Balcarce correspondientes a la campaña 2016/17. INTA, EEA Balcarce, Bs. As., ArgentinaCasanave Ponti, S., Videla, CC., Monterubbianesi, M.G., Andrade F.H. & Rizzalli, R.H. (2020). Crop intensification with sustainable practices did not increase N2O. Agriculture, Ecosystems and Environment, 292, 106828.

Cassman, K.G. (1999). Ecological intensification of cereal production systems: Yield potential, soil quality, and precision agriculture. Pro-ceedings National Academic Sciences of United States of America, 96, 5952-5959.

Cassman, K.G. (2017). Ecological intensification of maize-based cropping systems. Better Crops with Plant Food, 101, 4-6.

Castaldi, S. (2000). Responses of nitrous oxide, dinitrogen and carbon dioxide production and oxygen consumption to temperature in forest and agricultural light-textured soils determined by model experiments. Biology and Fertility of Soils, 32, 67–72.

Cavigelli, M.A. & Parkin, T.B. (2012). Cropland Management Contributions to GHG Flux: Eastern and Central U.S. En: M.A. Liebig, A. Fran-zleubbers, and R. Follett (Eds) Waltham Managing agricultural greenhouse gases: coordinated agricultural research through GRACEnet to address our changing climate. MA: Academic Press.

Caviglia, O.P., Rizzalli, R.H., Monzón, J.P., García, F.O., Melchiori, R.J.M., Martinez, J.J., Cerrudo, A., Irigoyen, A., Barbieri, P.A., Van Opstal, N.V. & Andrade, F.H., (2019). Improving resource productivity at a cropping sequence level. Field Crop Research, 235, 129-141.

Cayuela, M.L., Aguilera, E., Sanz-Cobena, A., Ddams, D., Abalos, D., Barton, R., Ryals, R., Silver, L.S., Alfonso, A.A., Pappa, V.A., Smith, P., Garni-er, J., Billen, G., Bouwman, L., Bondeau, A. & Lassaletta, L. (2017). Direct nitrous oxide emissions in Mediterranean climate cropping sys-tems: emission factors based on a meta-analysis of available measurement data. Agriculture, Ecosystems & Environment, 238, 25-35.

Chang, C., Cho, C.M. & Janzen, H.H. (1998). Nitrous oxide emission from long-term manured soils. Soil Science Society of America Journal, 62, 677-682.

Chaves, B., De Neve, S., Cabrera, M.D.L., Boeckx, P., Van Cleemput, O. & Hofman, G. (2005). The effect of mixing organic biological waste materials and high-N crop residues on the short-time N2O emission from horticultural soil in model experiments. Biology & Fertility of Soils. 41, 411–418.

Chen, S., Wang, F., Zhang, Y., Qin, S. W., Wang, S., Hu, C., & Binding, L. (2018). Organic carbon availability limiting microbial denitrification in the deep vadose zone. Environmental Microbiology, 20(3): 980–992.

Ciampitti, I.A., Ciarlo, E. & Conti, M.E. (2008). Nitrous oxide emissions from soil during soybean [(Glycine max (L.) Merrill] crop phenological stages and stubbles decomposition period. Biology & Fertility of Soils, 44, 581–588.

Cosentino, V.R.N., Figueiro Aureggui, S.A. & Taboada, M.A. (2013). Hierarchy of factors driving N2O emissions in non-tilled soils under different crops. European Journal of Soil Science, 64, 550–557.

Cosentino, V., Minervini, A., & Taboada, M. (2017).Influence of stubble quality and degree of soil-stubble contact on N2O emission. Plant, Soil and Environment, 63(7), 289-294.

Dalal, R.C., Wang, W., Robertson, G.P. & Parton, W.J. (2003). Nitrous oxide emission from Australian agricultural lands and mitigation op-tions: a review. Australian Journal of Soil Research, 41, 165–195.

Davidson, E.A., Keller, M., Erickson, H.E., Verchot, L.V. & Veldkamp, E. (2000). Testing a conceptual model of soil emissions of nitrous and nitric oxides. Bioscience, 50, 667-680.

Della Chiesa, T., Piñeiro, G. & Yahdjian, L. (2018). Gross, Background, and Net Anthropogenic Soil Nitrous Oxide Emissions from Soybean, Corn, and Wheat Croplands. Journal of Environmental Quality, 48, 16–23.

Eagle, A.J., Olander, L.P., Locklier, K.L., Heffernan, J.B. & Bernhardt, E.S. (2017). Fertilizer management and environmental factors drive N2O and NO3 losses in maize: A meta-analysis. Soil Science Society of America Journal, 81, 1191-1202.

Farquharson, R. & Baldock, J.A. (2008). Concepts in modelling N2O emission from land use. Plant and Soil, 309(1),147-167

Firestone, M.K. & Davidson, E.A. (1989). Microbiological basis of NO and N2O production and consumption in soil. In: M.O. Andreae and D.S. Schimel (Ed.). Exchange of trace gases between terrestrial ecosystems and the atmosphere. John Wiley and Sons, New York, NY (pp. 7-21)

Garbeva, P., van Veen J.A. & van Elsas, J.D. (2004). Microbial diversity in soil: selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annual Review of Phytopathology, 42, 243–270.

Glinski, J. & Stepniewski, W. (1985). Soil aeration and Its Role for Plants. CRC Press. Boca Raton, Florida. 237 p. Gomes, J., Bayer, C., Costa, F.S., Piccolo, M.C., Zanatta, J.A., Vieira, F.C.B. y Six, J. (2009). Soil nitrous oxide emissions in long-term cover crops based rotations under subtropical climate. Soil and Tillage Research, 106 (1), 36-44.

Granli, T. & Bockman, O. C. (1994). Nitrogen oxide from agriculture. Norwegian Journal of Agriculture Science, 12, 7-127.

Grassini, P. & Cassman, K.G. (2012). High-yield maize with large net energy yield and small global warming intensity. Proceedings of the National Academy of Sciences (PNAS), 109, 1074-1079.

Groffman, P. (1991). Ecology of nitrification and denitrification in soil evaluated at scales relevant to atmospheric chemistry. En: J. Rogers and W. Whitman, ed., Microbial production and consumption of greenhouse gases: Methane, nitrogen oxides and halomethanes. Ameri¬can Society for Microbiology, Washington, DC. (pp. 201-217).

Groffman, P. & Crawford, M. (2003). Denitrification potential in urban riparian zones. Journal of Environmental Quality, 32, 1144-1149.

Groffman, P.M., Butterbach-Bahl, K., Fulweiler, R.W., Gold, A.J., Morse, J.L., Stander, E.K., Tague, C, Tonitto, C. & Vidon, P. (2009). Challengesto incorporating spatially and temporally explicit phenomena (hotspots and hot moments) in denitrification models. Biogeochemistry, 93, 49–77.

Guo, X., Drury, C.F., Yang, X., Reynolds, W.D. & Fan, R. (2014). The extent of soil drying and rewetting affects nitrous oxide emissions, deni-trification, and nitrogen mineralization. Soil Science Society of America Journal, 78 (1), 194-204.

Han, Z., Walter, M.T. & Drinkwater, L.E. (2017). N2O emissions from grain cropping systems: a meta-analysis of the impacts of fertilizer-ba-sed and ecologically-based nutrient management strategies. Nutrient Cycling in Agroecosystems, 107, 335-355.

Hu, H.W., Chen, D.L. & He, J.Z. (2015). Microbial regulation of terrestrial nitrous oxide formation: understanding the biological pathways for prediction of emission rates. FEMS Microbiology Reviews, 39, 729-749.

Inaba, S., Tanabe, K., Eda, S., Ikeda, S., Higashitani, A., Mitsui, H. & Minamisawa, K. (2009). Nitrous oxide emissions and microbial commu-nity in the rhizosphere of nodulated soybeans during the late growth period. Microbes and Environment, 24, 64-67.

Inaba ,S., Ikenishi, F., Itakura, M., Kikuchi, M., Eda, S., Chiba, N., Katsuyama, C., Yuichi Suwa, Y., Mitsui, H., & Minamisawa, K. (2012). N2O emission from degraded soybean nodules depends on denitrification by Bradyrhizobium japonicum and other microbes in the rhizos-phere. Microbes and Environment, 27, 470–476.

Intergovernmental Panel on Climate Change (2014). En: Pachauri, R.K., Allen, M.R., Barros, V.R., Broome, J., Cramer, W., Christ, R., Church, J.A., Clarke, L., Dahe, Q., Dasgupta, P., & Dubash, N.K. (Eds.), Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to thto the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. 151. IPCC, Geneva Switzerland.

Intergovernmental Panel on Climate Change (2019) .Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Calvo Buendia, E., Tanabe, K., Kranjc, A., Baasansuren, J., Fukuda, M., Ngarize, S., Osako, A., Pyrozhenko, Y., Shermanau, P. & Federici, S. (eds). In: IPCC, Switzerland.Jacinthe, P.A. & Dick, W.A. (1997). Soil management and nitrous oxide emissions from cultivated fields in Southern Ohio. Soil Till Res. 41, 221-235.

Jantalia, C.P., Henrique, P., dos Santos, H.P., Urquiaga, S., Robert, M., Boddey, R.M. & Alves, B.J.R. (2008). Fluxes of nitrous oxide from soil under different crop rotations and tillage systems in the South of Brazil. Nutrient cycling in agroecosystems, 82, 161–173.

Keeney, D.R. & Nelson, D. W. (1982). Nitrogen inorganic forms. In: Page A. L. (Ed) Methods of soil analysis, part 2: chemical and microbiolo-gical properties USA: Soil Science Society of America. (pp. 643–698)

Lefcheck, J.S., (2016). PIECEWISESEM: Piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods in Ecology and Evolution, 7, 573–579.

Leitner, S.; Homyak P.M.; Blankinship, J.C.; Eberwein, J.; Jenerette, G.D.; Zechmeister-Boltenstern, S. & Schimel, J.P. (2017). Linking NO and N2O emission pulses with the mobilization of mineral and organic N upon rewetting dry soils. Soil Biology & Biochemistry, 115, 461-466.

Lemon, S.C., Roy, J., Clark, M.A., Friedmann, P.D. & Rakowski, W. (2003). Classification and regression tree analysis in public health: Metho-dological review and comparison with logistic regression. Annals of Behavioral Medicine, 26, 172–181.

Li, C., Frolking, S. & Frolking, T.A. (1992). Model of nitrous oxide evolution from soil driven by rainfall events: 1. Model structure and sensi-tivity. Journal of Geophysical Research, 97, 9759-9776.

Lin, S., Iqbal, J., Hu, R. & Feng, M.L. (2010). N2O emissions from different land uses in mid-subtropical China. Agriculture Ecosystems & Environment, 136, 40-48. .

Linn, D.M. & Doran, J.W. (1984). Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils. Soil Science Society of America Journal, 48, 1267–1272.

Maharjan, B., Venterea, R.T. & Rosen, C. (2014). Fertilizer and irrigation management effects on nitrous oxide emissions and nitrate lea-ching. Agronomy Journal, 106, 703-714.

Maljanen, M., Virkajarvi, P., Hytonen, J., Oquist, M., Sparrman, T. & Martikainen, P.J. (2009). Nitrous oxide production in boreal soils with variable organic matter content at low temperature – snow manipulation experiment. Biogeosciences, 6, 2461–2473.

Millar, N. & Baggs, E.M. (2004). Chemical composition, or quality, of agroforestry residues influences N2O emissions after their addition to soil. Soil Biology and Biochemistry, 36, 935-943.

Mitchell, D.C., Castellano, M.J., Sawyer, J.E. y Pantoja, J. (2013). Cover Crop Effects on Nitrous Oxide Emissions: Role of Mineralizable Carbon. Soil Science Society of America Journal, 77, 1765–1773.

Molodovskaya, M., Singurindy, O., Richards, B.K., Warland, J., Johnson, M.S. & Steenhuis, T.S. (2012). Temporal variability of nitrous oxide from fertilized croplands: hot moment analysis. Soil Science Society of America Journal, 76(5), 1728-1740.

Morgan, J.N. & Sonquist, J.A. (1963). Problems in the analysis of survey data, and a proposal. Journal of the American Statistical Associa-tion, 58, 415–434.

Mosier, A.R., Halvorson, A.D., Reule, C.A. y Liu, X.J. (2006). Net global warming potential and greenhouse gas intensity in irrigated cropping systems in northeastern Colorado. Journal of Environmental Quality, 35, 1584–1598.

Müller, C., Stevens, R., Laughlin, R. & Jägera, H. (2003). Microbial processes and the site of N2O production in a temperate grassland soil. Soil Biology & Biochemistry, 36 (3)

Nakagawa, S. & Schielzeth, H. (2013). A general and simple method for obtaining R2 from generalized linear mixed-effects models. Me-thods in Ecology and Evolution, 4, 133–142. Omonode, R.A., Halvorson, A.D., Gagnon, B. & Vyn, T.J. (2017). Achieving Lower Nitrogen Balance and Higher Nitrogen Recovery Efficiency Reduces Nitrous Oxide Emissions in North America’s Maize Cropping Systems. Frontiers in Plant Science, 8, 1080.

Omonode, R.A., Smith, D.R.,Gál, A. & Vyn, T.J. (2010). Soil nitrous oxide emissions in maize following three decades of tillage and rotation treatments. Soil Science Society of America Journal, 75, 152-163.

Orcellet, J.M., Echeverría, H.E., Sainz Rozas, H.R., Diovisalvi, N., Berardo, A. & Reussi Calvo, N. (2015). Nitrogen use efficiency of barley in the southeastern Buenos Aires: Effect of split applications. Ciencia del suelo, 33(1), 97-105.

Parkin, T.B. & Kaspar, T.C. (2006). Nitrous oxide emissions from maize–soybean systems in the Midwest. Journal of Environmental Quality, 35,1496-1506.

Parkin, T.B. (2008). Effect of sampling frequency on estimates of cumulative nitrous oxide emissions. Journal of Environmental Quality, 37, 1390-1395.

Parkin, T.B. & Venterea, R.F.P. (2010). Sampling Protocols. Chapter 3. Chamber-Based Trace Gas Flux Measurements. En: Follett, R.F. (Ed) Sampling Protocols. (pp. 3-39).

Parton, W.J., Holland, E.A., Del Grosso, S., Hartman, M.D., Martin, R.E., Mosier, A.R., Ojima, D.S. & Schim, D.S. (2001). Generalized model for NOx and N2O emissions from soils. Journal of Geophysical Research Atmospheres, 106, 17403-17419.

Pelster, D.E., Larouche, F., Rochette, P., Chantigny, M.H., Allaire, S. & Angers, D.A., (2011). Nitrogen fertilization but not soil tillage aff ects nitrous oxide emissions from a clay loam soil under a maize-soybean rotation. Soil & Tillage Research, 3, 298-317.

Penning de Vries, F.W.T. (1972). Respiration and growth. En: Rees, A.P. (Ed.), Crop Processes in Controlled Environments. Academic Press, New York, pp. 327–347.

Perdomo, C. y Barbazán, M. (2001). Nitrógeno. Área de suelos y agua. Cátedra de Fertilidad, Facultad de Agronomía. Universidad de la República.

Perdomo, C., Irisarri, P. & Ernst, O. (2009). Nitrous oxide emissions from and Uruguayan argiudoll under different tillage and rotation treat-ments. Nutrient Cycling in Agroecosystems, 84, 119–128.

Piccinetti, C.F., Bacigaluppo, S., Di Ciocco, C.A., De Tellería, J.M. & Salvagiotti, F. (2021). Soybean in rotation with cereals attenuates nitrous oxide emissions as compared with soybean monoculture in the Pampas region. Geoderma, 402, 115192.

Pietrobon, M. (2012). Densidad de plantas en el cultivo de maíz (Zea Mays L.) y su efecto sobre la eficiencia de uso de nitrógeno. [Tesis de Magister Scientiae] Área de Post-grado en Producción Vegetal, Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Balcarce, Buenos Aires, Argentina.

Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. (2016). nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-126. http://CRAN.R-project.org/package=nlme.

Porta Casanellas, J., Lopez-acevedo, M. y Poch, R.M. (2011). Introducción a la Edafología. Uso y protección de suelos. Antonio Madrid Vicente (ed).

R Development Core Team. (2017). R: a Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.r-project.org>f

Ravishankara, A.R., John, S.D. & Portmann, R.W. (2009). Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science, 326, 123-125.

Reatto, A., Bruand, A., Silva, E.M., Guéganl, R., Cousin, I., Brossard, M. & Martins, E.S. (2009). Shrinkage of microaggregates in Brazilian latosols during drying: Significance of the clay content, mineralogy and hydric stress history. European Journal of Soil Science, 60, 1106–1116.

Robertson, G. P. & Groffman, P.M. (2015). Nitrogen transformations. In: Paul. E.A (ed). Soil microbiology, ecology and biochemistry. 4th ed. Academic Press, Burlington, Massachusetts, USA.

Sainz Rozas, H.R., Echeverría, H.E. & Picone, L. (2001). Denitrification in Maize Under No–Tillage: Effect of Nitrogen Rate and Application Time. Soil Science Society of America Journal, 65, 1314–1323.

Sainz Rozas, H.R., Echeverría, H.E. & Barbieri, P.A. (2004). Nitrogen balance as affected by application time and nitrogen fertilizer rate in irrigated no-tillage maize. Agronomy Journal, 96(2), 1622-1631.

Sánchez, C. & Minamisawa, K. (2012). Nitrogen Cycling in Soybean Rhizosphere: Sources and Sinks of Nitrous Oxide (N2O). Frontiers in Microbiology, 10, 1943.

Shen, J., Treu, R., Wang, J., Nicholson, F.A., Bhogal, A. & Thorman, R. (2018). Modeling nitrous oxide emissions from digestate and slurry applied to three agricultural soils in the United Kingdom: Fluxes and emission factors. Environmental Pollution, 243, 1952-1965.

Siddique, K.M., Johansen, C., Turner, N., Jeuffroy, M-H., Hashem, A., Sakar, D., Gan, Y. & Alghamdi, S. (2012). Innovations in agronomy for food legumes. A review. Agronomy for Sustainable Development, 32(1), 45-64.

Smith, K.A., Ball, T., Conen, F., Dobbie, K.E., Massheder, J. & Rey, A. (2003). Exchange of greenhouse gases between soil and atmosphere: interactions of soil physical factors and biological processes. European Journal of Soil Science, 54, 779–791. Snyder, C.S., Bruulsema, T.W., Jensen, T.L. & Fixen, P.E. (2009). Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agriculture, Ecosystems & Environment, 133, 247–266.

Soil Survey Staff. (2014). Keys to Soil Taxonomy. 12th ed. USDA. Natural Resources Conservation Service, pp. 211- 256.

Taboada, M.A. y Lavado, R.S. (1986). Características del régimen ácuico de un Natracuol de la pampa deprimida. Ciencia del Suelo, 4, 66-71.

Therneau, T. & Atkinson, B. (2019). rpart: Recursive Partitioning and Regression Trees. R package version 4.1-15.

Thougnon Islas, A.J., Carmona, D., Monzón, J.P., San Martino, S. & Mondino, E.A. (2018). Los nematodos como indicadores de la salud del suelo en sistemas intensificados de producción de granos del Sudeste Bonaerense. Actas XXVIII Reunión Argentina de Ecología.

Tian, H., Yang, J., Xu, R., Lu, C., Canadell, J. G., Davidson, E. A., Jackson, R.B., Arneth, A., Chang, J., Ciais, P., Gerber, S.; Ito, A., Joos., F., Lienert, S., Messina, P., Olin, S., Pan, S., Changhui Peng, C., Saikawa, E. & Zhang, B. (2019). Global soil nitrous oxide emissions since the preindustrial era estimated by an ensemble of terrestrial biosphere models: magnitude, attribution, and uncertainty. Global Change Biology, 25(2), 640-659.

Tittonell, P. (2014). Ecological intensification-sustainable by nature. Current Opinion in Environmental Sustainability, 8, 53–61.

Uchida, Y. & Akiyama, H. (2013). Mitigation of postharvest nitrous oxide emissions from soybean ecosystems: a review. Soil Science and Plant Nutrition, 59, 477-487.

Van Groenigen, J. W., Velthof, G. L., Oenema, O., Van Groenigen, K. J. & Van Kessel, C. (2010). Towards an agronomic assessment of N2O emissions: a case study for arable crops. European Journal of Soil Science, 61, 903–913.

Venables, W.N. & Ripley, B.D. (2002). Modern Applied Statistics with S. 4th ed. Springer, pp 495.

Venterea, R.T., Maharjan, B. & Dolan, M.S. (2011). Fertilizer source and tillage effects on yield-scaled nitrous oxide emissions in a maize cropping system. Journal of Environmental Quality, 40, 1521-1531.

Venterea, R.T., Coulter, J.A. & Dolan, M.S. (2016). Evaluation of intensive “4R” strategies for decreasing nitrous oxide emissions and nitro-gen surplus in rainfed maize. Journal of Environmental Quality, 45, 1186–1195.

Videla, C., Pazos, A., Trivelin, P.C.O., Echeverría, H.E. y Studdert, G.A. (2005). Mineralización bruta de nitrógeno bajo labranza convencional, siembra directa y pastura. Ciencia del Suelo. 23(2): 133-144.

Wang, W.J., Dalal, R.C., Reeves, S.H., Butterbach-Bahl, K. & Kiese, R. (2011). Greenhouse gas fluxes from an Australian subtropical cropland under long-term contrasting management regimes. Global Change Biology, 17, 3089–3101.

Weier, K.L., Doran, J.W., Power, J.F. & Walters, D.T. (1993). Denitrification and the dinitrogen/nitrous oxide ratio as affected by soil water, available carbon, and nitrate. Soil Science Society of America Journal, 57, 66-72.

Wrage, N., Velthof, G.L., Laanbroek, H.J. & Oenema, O. (2004). Nitrous oxide production in grassland soils: assessing the contribution of denitrification. Soil Biology & Biochemistry, 36, 229–236.

Wyngaard, N., Videla, C., Picone, L., Zamuner, E. & Maceira, N. (2012). Nitrogen dynamics in a feedlot soil. Journal of Soil Science & Plant Nutrition, 12(3), 563-574.

Yang, L., & Cai, Z. (2005). The effect of growing soybean (Glycine max. L.) on N2O emission from soil. Soil Biology & Biochemistry, 37, 1205-1209.

Zadoks, J.C., Chang, T.T. & Konzak, C.F. (1974). A decimal code for the growth stages of cereals. Weed Research, 14, 415-421.

Zanatta, J.A., Bayer, C., Vieira, F.C.B., Gomes, J. & Tomazi, M. (2010). Nitrous oxide and methane fluxes in south Brazilian gleysol as affected by nitrogen fertilizers. Revista Brasileira de Ciência do Solo, 34, 1653-1665.

Zhao, X., Liu, S. L., Pu, C., Zhang, X.Q., Xue, J.F., Zhang, R., Wang, Y.Q., Lal, R., Zhang, H.L. & Chen, F. (2016). Methane and nitrous oxide emissions under no‐till farming in China: A meta‐analysis. Global Change Biology, 22, 1372-1384.

Zhao, X., Nafziger, E.D. & Pittelkow, C.M. (2017). Nitrogen rate strategies for reducing yield-scaled nitrous oxide emissions in maize. Environmental Research Letters, 12, 124006.

Descargas

Publicado

29-12-2022

Cómo citar

Casanave Ponti, S. M., Videla, C. del C., Rizzalli, R., Monterubbianesi, M. G., García, F. O., Ortega, F. ., & Andrade, F. H. (2022). ECOLOGICAL INTENSIFICATION DECREASED YIELD-SCALED N2O EMISSIONS IN A SOYBEAN-BARLEY-MAIZE SEQUENCE. Ciencia Del Suelo, 40(2). Recuperado a partir de https://ojs.suelos.org.ar/index.php/cds/article/view/740

Número

Sección

Manejo y Conservación de Suelos y Aguas. Riego y Drenaje