NITROUS OXIDE EMISSIONS FROM A TYPICAL ARGIUDOL SOIL WITH ORGANIC AND CHEMICAL AMENDMENTS

Autores

  • Vanina Rosa Noemí Cosentino INTA
  • Mónica Gabriela Pérez
  • Mauro Ezequiel Ostinelli
  • Romina Ingrid Romaniuk
  • Natalia Andrea Mortola
  • Pedro Federico Rizzo
  • Alejandro Oscar Costantini

Palavras-chave:

amendment, greenhouse gases, organic fertilizers, nitrogen loses

Resumo

Diversification in fertilizer sources will be necessary to meet the growing demand for food worldwide. For this reason, organic amendments emerge as a synthetic fertilizers alternative. Composting organic waste stabilizes the nitrogen (N) content and delays N release to the soil. Applying composted amendments to the soil could reduce the losses of N, including nitrous oxide (N2O), a greenhouse gas with great potential for global warming. The objective of this work was to evaluate the N2O emission in typical Argiudol soil after applying a traditional synthetic fertilizer, raw poultry manure, composted poultry manure and control soil. Cumulative N2O emission rates during the 32 days of the trial were 1273, 965, 423, and 244 g N2O-N/ha from the soil using urea, poultry manure, composted poultry manure, and control, respectively. Our results suggest that the application of composted poultry manure to the soil produces lower N2O emissions than the application of raw poultry manure or urea. The presence of more stabilized compounds in the composted manure decreases the soil nitrate availability.

Referências

Akiyama, H & H Tsuruta. 2003. Nitrous Oxide, Nitric Oxide, and Nitrogen Dioxide Fluxes from Soils after Manure and Urea Application. J Environ Qual 32: 423–431. https://doi.org/10.2134/jeq2003.4230.

Alexandratos, N. 2012. World agriculture towards 2030 / 2050. The 2012 Revision PROOF COPY. ESA Work Pap. 12: 146.

Alves, BJR; KA Smith; RA Flores; AS Cardoso; WRD Oliveira; CP Jantalia; S Urquiaga & RM Boddey. 2012. Selection of the most suitable sampling time for static chambers for the estimation of daily mean N2O flux from soils. Soil Biol Biochem. 46: 129–135. Elsevier Ltd. https://doi.org/10.1016/j.soilbio.2011.11.022.

Blake, G. 1965. Bulk Density 374-390. Methods of soil analysis. Part 1: Physical and mineralogical properties, including statistics of measurement and sampling (pp. 374-390).

Bustamante, MA; C Paredes; FC Marhuenda-Egea; A Pérez-Espinosa; MP Bernal & R Moral. 2008. Co-composting of distillery wastes with animal manures: Carbon and nitrogen transformations in the evaluation of compost stability. Chemosphere. 72: 551–557. https://doi.org/10.1016/j.chemosphere.2008.03.030.

Castaldi, S. 2000. Responses of nitrous oxide, dinitrogen and carbon dioxide production. Biol Fertil Soils. 32: 67–72.

Cataldo, DA; MH Haroon; LE Schrader & VL Youngs. 1975. Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun Soil Sci Plant Anal. 6: 71–80. https://doi.org/10.1080/00103627509366547.

Chirinda, N; S Loaiza; L Arenas; V Ruiz; C Faverín; C Alvarez; JV Savian; R Belfon; K Zuniga; LA Morales-Rincon; C Trujillo; M Arango; I Rao; J Arango; M Peters; R Barahona; C Costa; TS Rosenstock; M Richards; D Martinez-Baron & L Cardenas. 2019. Adequate vegetative cover decreases nitrous oxide emissions from cattle urine deposited in grazed pastures under rainy season conditions. Sci Rep. 9: 1–9. https://doi.org/10.1038/s41598-018-37453-2

Cosentino, VRN; PL Fernandez; SA Figueiro & MA Taboada. 2012. N2O emissions From a Cultivated Mollisol : Optimal Time of Day for Sampling and the Role of Soil. R. Bras. Ci. Solo. 36: 1814–1819.

Cosentino, VRN; SA Figueiro Aureggui & MA Taboada. 2013. Hierarchy of factors driving N2O emissions in non-tilled soils under different crops. Eur J Soil Sci. 64: 550–557. https://doi.org/10.1111/ejss.12080

Cosentino, VRN; RI Romaniuk; AM Lupi; FM Gómez; H Rimski Korsakov; CR Álvarez & E Ciarlo. 2020. Comparison of field measurement methods of nitrous oxide soil emissions: from the chamber to the vial. R. Bras. Ci. Solo 44:e0190100. 16-6-2020. https://doi.org/10.36783/18069657rbcs20190100.

Dalal, RC; I Gibson; DE Allen & NW Menzies. 2010. Green waste compost reduces nitrous oxide emissions from feedlot manure applied to soil. Agric Ecosyst Environ. 136: 273–281. https://doi.org/10.1016/j.agee.2009.06.010.

Dalal, RC; W Wang; GP Robertson & WJ Parton. 2003. Nitrous oxide emission from Australian agricultural lands and mitigation options: a review. Aust J Soil Res. 41: 165–195.

Davidson, EA. 1991. Fluxes of nitrous oxide and nitric oxide from terrestrial ecosystems. In Rogers JE & W Whitman (eds.). Microbial production and consumption of greenhouse gases: methane, nitrógeno oxides, and halomethanes. pp. 219–235.

Di Rienzo, JA; F Casanoves; MG Balzarini; L Gonzalez; M Tablada & CK Robledo. 2008. Group InfoStat.

Dorich, C; R Conant & P Grace. 2020. Global Research Alliance N2O chamber methodology guidelines: Guidance for gap-filling missing measurements. J Environ Qual. https: //doi.org/10.1002/jeq2.20138.

Galloway, JN; AR Townsend; JW Erisman; M Bekunda; Z Cai; JR Freney; LA Martinelli; SP Seitzinger & MA Sutton. 2008. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science. 320: 889–892. https://doi.org/10.1126/science.1136674

Godfray, HCJ; P Aveyard; T Garnett; JW Hall; TJ Key; J Lorimer ... & SA Jebb. 2018. Meat consumption, health, and the environment. Science, 361(6399), eaam5324.

Gómez, J. 2000. Feriva S. A. Colombia. Abonos orgánicos. pp. 49–69.

Gregorutti, VC & OP Caviglia. 2017. Nitrous oxide emission after the addition of organic residues on soil surface. Agric Ecosyst Environ. 246: 234–242. https://doi.org/10.1016/j.agee.2017.06.016.

Hayakawa, A; H Akiyama; S Sudo & K Yagi. 2009. N2O and NO emissions from an Andisol field as influenced by pelleted poultry manure. Soil Biol Biochem. 41: 521–529. https://doi.org/10.1016/j.soilbio.2008.12.011.

Hénault, C; A Grossel; B Mary; M Roussel & J LéOnard. 2012. Nitrous Oxide Emission by Agricultural Soils: A Review of Spatial and Temporal Variability for Mitigation. Pedosphere. 22: 426–433. https://doi.org/10.1016/S1002-0160(12)60029-0

Hessen, DO; GI A°gren; TR Anderson; JJ Elser & PC De Ruiter. 2004. Carbon sequestration in ecosystems: the role of stoichiometry. Ecology, 85, 1179–1192.

INTA. 2019. Instituto Nacional de Tecnología Agropecuaria. http://anterior.inta.gov.ar/suelos/cartas/.

IPCC. 2014. Intergovernmental Panel on Climate Change. Climate Change 201: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.

IPCC. 2019. Intergovernmental panel on climate change. Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 4. Agriculture, Forestry and Other Land Use. Chapter 10. Emissions from livestock and manure management.

Kim, S & BE Dale. 2008. Effects of nitrogen fertilizer application on greenhouse gas emissions and economics of corn production. Environ Sci Technol. 42: 6028–6033..

Kim, SU; C Ruangcharus; S Kumar; HH Lee; HJ Park; ES Jung & CO Hong. 2019. Nitrous oxide emission from upland soil amended with different animal manures. Appl Biol Chem. 62. https://doi.org/10.1186/s13765-019-0409-5.

Martín-Olmedo, P & RM Rees. 1999. Short-term N availability in response to dissolved-organic-carbon from poultry manure, alone or in combination with cellulose. Biol Fertil Soils. 29: 386–393. https://doi.org/10.1007/s003740050569.

Masaka, J; J Nyamangara & M Wuta. 2014. Nitrous oxide emissions from wetland soil amended with inorganic and organic fertilizers. Arch Agron Soil Sci. 60: 1363–1387. https://doi.org/10.1080/03650340.2014.890707.

Mahmud, K; D Panday; A Mergoum & A Missaoui. Nitrogen Losses and Potential Mitigation Strategies for a Sustainable Agroecosystem. 2021. Sustainability 13 (4) 2400. https://doi.org/ 10.3390/su13042400.

Paustian, K; J Lehmann; S Ogle; D Reay; GP Robertson; P Smith & WK Kellogg. 2016. Climate-smart soils. Nature. 532: 49–57.

Perez, MG; RI Romaniuk; VRN Cosentino; M Busto; FA González; MA Taboada; BJR Alves & AO Costantini. 2021. Winter soil N2O emissions from a meat production system under direct grazing of Argentine Pampa. Anim Prod Sci. 61: 156–162. https://doi.org/10.1071/AN19517.

Popp, J; Z Lakner; M Harangi-Rákos & M Fári. 2014. The effect of bioenergy expansion: Food, energy, and environment. Renew Sustain Energy Rev. 32: 559–578. https://doi.org/10.1016/j.rser.2014.01.056.

Quiroga, G; L Castrillón; Y Fernández-Nava & E Marañón. 2010. Physico-chemical analysis and calorific values of poultry manure. Waste Manag. 30: 880–884. https://doi.org/10.1016/j.wasman.2009.12.016

Rapson, TD & H Dacres. 2014. Analytical techniques for measuring nitrous oxide. TrAC - Trends Anal Chemistry. 54: 65–74. https://doi.org/10.1016/j.trac.2013.11.004.

Rizzo, PF; PA Bres; BJ Young; MS Zubillaga; NI Riera; ME Beily; A Argüello; DC Crespo; A Sánchez & D Komilis. 2020. Temporal variation of physico-chemical, microbiological, and parasitological properties of poultry manure from two egg production systems. J Mater Cycles Waste Manag. 22: 1140–1151. https://doi.org/10.1007/s10163-020-01008-3.

Rizzo, PF; V Della Torre; NI Riera; D Crespo; R Barrena & A Sánchez. 2015 Co-composting of poultry manure with other agricultural wastes: process performance and compost horticultural use. J Mater Cycles Waste Manag. 17: 42–50. https://doi.org/10.1007/s10163-013-0221-y.

Rochette, P. & NS Eriksen-Hamel. 2008. Chamber Measurements of Soil Nitrous Oxide Flux: Are Absolute Values Reliable? Soil Sci Soc Am J.. 72: 331–342. https://doi.org/10.2136/sssaj2007.0215

Roig, N; J Sierra; E Martí; M Nadal; M Schuhmacher & JL Domingo. 2012. Long-term amendment of Spanish soils with sewage sludge: Effects on soil functioning. Agric Ecosyst Environ. 158: 41–48. https://doi.org/10.1016/j.agee.2012.05.016.

Schindlbacher, A; S Zechmeister-Boltenstern & K Butterbach-Bahl. 2004. Effects of soil moisture and temperature on NO, NO2, and N2O emissions from European forest soils. J Geophys Res D Atmos. 109: 1–12. https://doi.org/10.1029/2004JD004590.

SCyMA & SENASA. 2019. Resolución Conjunta 1/19 - Marco Normativo para la Producción, Registro y Aplicación de Compost. Ciudad Autónoma de Buenos Aires.

Shelton, DR; AM Sadeghi & GW McCarty. 2000. Effect of soil water content on denitrification during cover crop decomposition. Soil Sci. 165: 365-371.

Snyder, CS; TW Bruulsema; TL Jensen & PE Fixen. 2009. Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agric Ecosyst Environ. 133: 247–266.

Steenwerth, K. & KM Belina. 2008. Cover crops and cultivation: Impacts on soil N dynamics and microbiological function in a Mediterranean vineyard agroecosystem. Applied Soil Ecology. 40: 370-380.Sterner, RW & JJ Elser. 2002. Stoichiometry and homeostasis. In: Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere (eds R.W. Sterner & J. Elser), pp. 1–42. Princeton University, Princeton, NJ.

Thornton, FC; NJ Shurpali; BR Bock & KC Reddy. 1998. N2O and NO emissions from poultry litter and urea applications to Bermuda grass. Atmos Environ. 32: 1623–1630. https://doi.org/10.1016/j.agee.2009.04.021.

Tian, H; C Lu; P Ciais; AM Michalak; JG Canadell; E Saikawa; DN Huntzinger; KR Gurney; S Sitch; B Zhang; J Yang; P Bousquet; L Bruhwiler; G Chen; E Dlugokencky; P Friedlingstein; J Melillo; S Pan; B Poulter; R Prinn; M Saunois; CR Schwalm & SC Wofsy. 2016. The terrestrial biosphere as a net source of greenhouse gases to the atmosphere. Nature. 531: 225–228. https://doi.org/10.1038/nature16946

Tyson, SC & ML Cabrera. 1993. Nitrogen Mineralization in Soils Amended with Composted and Uncomposted Poultry Litter. Commun Soil Sci Plant Anal. 24: 2361–2374. https://doi.org/10.1080/00103629309368961.

Zechmeister-Boltenstern, S; G Schaufler & B Kitzler. 2007. NO, NO2, N2O, CO2 and CH4 fluxes from soils under different land use: temperature sensitivity and effects of soil moisture. 2007. Geophys Res Abstr. 9: 7968.

Publicado

29-08-2022

Como Citar

Cosentino, V. R. N., Pérez , M. G., Ostinelli , M. E., Romaniuk , R. I., Mortola , N. A., Rizzo , P. F., & Costantini , A. O. (2022). NITROUS OXIDE EMISSIONS FROM A TYPICAL ARGIUDOL SOIL WITH ORGANIC AND CHEMICAL AMENDMENTS. Ciencia Del Suelo, 40(1). Recuperado de https://ojs.suelos.org.ar/index.php/cds/article/view/710

Edição

Seção

Contaminación del Suelo y Calidad del Medio Ambiente