DYNAMICS OF SUBSURFACE WATERS IN THE WEST OF THE PROVINCE OF BUENOS AIRES
DOI:
https://doi.org/10.64132/cds.v43i1.889Keywords:
precipitation, statistical model, soilAbstract
A large part of the Argentinean Pampas plain has groundwater levels close to the soil surface which, together with excess water, often produce floods, causing a strong impact on ecosystems. The purpose of this study was to understand the dynamics of water-table and its correlation with rainfall in the west of the province of Buenos Aires, characterizing flood events, and identifying water risks due to the water-table near the surface through a statistical model which allows the identification and monitoring of areas affected by waterlogging and flooding. The scope of the flooding events was determined to develop an early warning system to mitigate the incidence of these extreme events. Time series of water-table level data were collected and compiled from phreatimeter data taken from wells distributed in General Villegas. A high association between water-table and landscape position (summit, slope and footslope) was found in the series of years analyzed. General Villegas has suffered floods with a certain periodicity, caused by rainfall and the consequent rise in the water table. The effects of the floods were studied through the analysis of satellite images, showing that 46.6% of the years evaluated presented some evidence of waterlogging. A simple model that relates precipitation, potential evapotranspiration, and drainable porosity of the soil with variations in water-table was calibrated. The mean simulated and observed water-table values were similar, which weas supported by the calibration and validation of the statistical model. Throughout the studied sites, high consistencies were found between predicted and observed values of water-table (RRMSE= 36.66 cm; RMSE= 36.97% and d= 0.96). The dynamics of the flooded area and the water table showed a close coupling during the study period, with precipitation being the most influential variable in flood cycles (R2=0.55; p<0.005). These events result from the interaction of several factors, such as rainfall, water-table, topography, and soil type at each site.
References
Alsina Torres, S. E., Nosetto, M. D., y Jobbagy Gampel, E. G. (2020). Base de datos “NAPA”: Primera síntesis de la dinámica freática pampeana desde 1950 al presente. Ciencia del Suelo, 38(2), 262–273. https://ri.conicet.gov.ar/handle/11336/143180
Aragón, R., Jobbágy, E. G., y Viglizzo, E. F. (2011). Surface and groundwater dynamics in the sedimentary plains of the Western Pampas (Argentina). Ecohydrology, 4(3), 433–447. https://doi.org/10.1002/ECO.149
Carta, H. G. (2016). Análisis de 115 años de precipitaciones (primera parte). http://hdl.handle.net/20.500.12123/667
Cisneros, J.M.; J.J. Cantero y A. Cantero G. 1997. Relaciones entre la fluctuación del nivel freático, su salinidad y el balance hídrico, en suelos salino-sódicos del centro de Argentina. Revista UNRC, 17, 23-35.
Degioanni, A., Cisneros, J., Cantero, A. G., y Videla, H. (2006). Modelo de simulación del balance hídrico en suelos con freática poco profunda. Ciencia Del Suelo, 24(1), 29–38. http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S1850-20672006000100004&lng=es&nrm=iso&tlng=es
Díaz-Zorita, M., Duarte, G. A., y Grove, J. H. (2002). A review of no-till systems and soil management for sustainable crop production in the subhumid and semiarid Pampas of Argentina. Soil and Tillage Research, 65(1), 1–18. https://doi.org/10.1016/S0167-1987(01)00274-4
Fila, G., Bellocchi, G., Acutis, M., y Donatelli, M. (2003). irene: a software to evaluate model performance. European Journal of Agronomy, 18(3–4), 369–372. https://doi.org/10.1016/S1161-0301(02)00129-6
Florio, E. L., Mercau, J. L., Jobbágy, E. G., y Nosetto, M. D. (2014). Interactive effects of water-table depth, rainfall variation, and sowing date on maize production in the Western Pampas. Agricultural Water Management, 146, 75–83. https://doi.org/10.1016/j.agwat.2014.07.022
García, G. A., García, P. E., Rovere, S. L., Bert, F. E., Schmidt, F., Menéndez, Á. N., Nosetto, M. D., Verdin, A., Rajagopalan, B., Arora, P., y Podestá, G. P. (2019). A linked modelling framework to explore interactions among climate, soil water, and land use decisions in the Argentine Pampas. Environmental Modelling & Software, 111, 459–471. https://doi.org/10.1016/J.ENVSOFT.2018.10.013
INTA. 1986. Carta de Suelos de la Provincia de Buenos Aires. Escala 1:50.000. Version digital. 2010.
Jobbágy, E. G., y Jackson, R. B. (2004). Groundwater use and salinization with grassland afforestation. Global Change Biology, 10(8), 1299–1312. https://doi.org/10.1111/J.1365-2486.2004.00806.X
Jørgensen, S. E., Kamp-Nielsen, L., Christensen, T., Windolf-Nielsen, J., y Westergaard, B. (1986). Validation of a prognosis based upon a eutrophication model. Ecological Modelling, 32(1–3), 165–182. https://doi.org/10.1016/0304-3800(86)90024-4
Justo C. y Sueiro, N. 2013. Suelos predominantes en el Noroeste Bonaerense. En: Mendez, D. y A. Otero (Eds.). Memoria técnica 2012-2013. Estación Experimental Agropecuaria General Villegas (pp. 141- 143). Ediciones Instituto Nacional de Tecnología Agropecuaria.
Kobayashi, K., y Salam, M. U. (2000). Comparing Simulated and Measured Values Using Mean Squared Deviation and its Components. Agronomy Journal, 92(2), 345–352. https://doi.org/10.2134/AGRONJ2000.922345X
Kollet, S. J. (2009). Influence of soil heterogeneity on evapotranspiration under shallow water table conditions:transient, stochastic simulations. Environmental Research Letters, 4(3), 035007. https://doi.org/10.1088/1748-9326/4/3/035007
Kruse, E., y Zimmermann, E. D. (n.d.). Hidrogeología de grandes llanuras. Particularidades en la llanura pampeana (Argentina).
Nosetto, M. D., Jobbágy, E. G., Jackson, R. B., y Sznaider, G. A. (2009). Reciprocal influence of crops and shallow ground water in sandy landscapes of the Inland Pampas. Field Crops Research, 113(2), 138-148. https://doi.org/10.1016/j.fcr.2009.04.016
Raes, D., Geerts, S., Kipkorir, E., Wellens, J., y Sahli, A. (2006). Simulation of yield decline as a result of water stress with a robust soil water balance model. Agricultural Water Management, 81(3), 335–357. https://doi.org/10.1016/J.AGWAT.2005.04.006
Small, I., Basins, D., y Toth, J. (1963). A theoretical analysis of groundwater flow in small drainage basins. Journal of Geophysical Research, 68(16), 4795–4812. https://doi.org/10.1029/JZ068I016P04795
Videla Mensegue, H., Degioanni A., y Cisneros J. 2018. Calibración de un modelo para predecir la variación de la profundidad de la napa freática. Actas del XXVI Congreso Argentino de la Ciencias del Suelo. San Miguel de Tucumán, Argentina
Viglizzo, E. F., Frank, F., Bernardos, J., Buschiazzo, D. E., y Cabo, S. (2006). A Rapid Method for Assessing the Environmental Performance of Commercial Farms in the Pampas of Argentina. Environmental Monitoring and Assessment, 117(1–3), 109–134. https://doi.org/10.1007/s10661-006-7981-y
Viglizzo, E. F., Lértora, F., Pordomingo, A. J., Bernardos, J. N., Roberto, Z. E., y Del Valle, H. (2001). Ecological lessons and applications from one century of low external-input farming in the pampas of Argentina. Agriculture, Ecosystems & Environment, 83(1–2), 65–81. https://doi.org/10.1016/S0167-8809(00)00155-9
Willmott, C. J. (1982). Some Comments on the Evaluation of Model Performance. Bulletin of the American Meteorological Society, 63(11), 1309–1313. https://doi.org/10.1175/1520-0477(1982)063<1309:SCOTEO>2.0.CO;2
Zamolinski A., R. Casas, y A. Pittaluga. 1994. Manejo de suelos salinos en el Noroeste de la Provincia de Buenos Aires. Publicación Técnica N°15. EEA INTA General Villegas. Buenos Aires. pp. 28.
Zárate, M. A. (2003). Loess of southern South America. Quaternary Science Reviews, 22(18–19), 1987–2006. https://doi.org/10.1016/S0277-3791(03)00165-3
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Alejandra Macchiavello, Cristian Alvarez, Elke Noellemeyer

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.