ANALYSIS OF GRAIN AND BASAL STALK NITROGEN CONTENT FOR NITROGEN DIAGNOSIS IN MAIZE

Authors

  • María Paula Iglesias Facultad de Ciencias Agrarias, UNMdP
  • Juan Manuel Orcellet Nidera Semillas S. A.
  • Hernán Sainz Rozas Facultad de Ciencias Agrarias, UNMdP. EEA INTA Balcarce. CONICET
  • Nicolás Wyngaard Facultad de Ciencias Agrarias, UNMdP. CONICET https://orcid.org/0000-0003-2675-7506
  • Nahuel Reussi Calvo Facultad de Ciencias Agrarias, UNMdP. CONICET https://orcid.org/0000-0002-4313-5226
  • Hernán Echeverría Consultor privado

DOI:

https://doi.org/10.64132/cds.v43i1.885

Keywords:

sowing date, critical level, requirement, Pampas Region

Abstract

Nitrogen (N) content in grains (Ngr) and basal stalk nitrate concentration at physiological maturity (NBT) of maize (Zea mays L.) have been proposed as tools for evaluating N status. However, thresholds for these indicators have not been calibrated for current production conditions, using hybrids with delayed N uptake and late sowing date. The aim of this work was to evaluate the performance of NBT and Ngr as predictors of crop N status at different sites of the Pampas Region. During 2013-2014 growing season, twenty-three maize experiments were carried out: 9 in the Southeastern Pampas (SEB), 5 in the Northern Pampas (NRP) for early sowing (NRPte) and 9 in NRP for late sowing (NRPta). Five N rates were applied: 0, 40, 80, 120 and 200 kg N ha-1. At physiological maturity, yield, Ngr content and NBT were determined. Relationships between relative yield (RR) and NBT and Ngr were established to define critical thresholds. The main results indicates that: a) the response to nitrogen fertilization was NRPte > SEB > NRPta, b) Ngr content follow the trend SEB > NRPta > NRPte, whereas NBT follows the trend NRPta > SEB > NRPte, c) mean critical levels were 1.29% (1.26% to 1.32%) for Ngr and 1256 mg kg-1 (1056 to 1493 mg kg-1) for NBT at 95% of RR, and d) a total N supply greater than 37 kg N t grain-1  results in N excess. In summary, both Ngr and NBT are adequate indicators of nitrogen status of maize, which can be used as postmortem analysis.

References

Aparicio, V., Costa, J. L., Sainz Rozas, H., Gimenez, D. y García F. (2015). Comparing nitrate-N losses through leaching by field measurements and nitrogen balance estimations. Communications in Soil Science and Plant Analysis, 46, 1229–1243. https://doi.org/10.1080/00103624.2015.1033533

Barbieri, P. A., Echeverría, H. E., Sainz Rozas, H. R. y Andrade, F. H. (2013). Nitrogen status in maize grown at different row spacings and nitrogen availability. Canadian Journal of Plant Science, 93, 1049-1058. https://doi.org/10.4141/CJPS2012-170

Bianchini, A., Magnelli, M. E., Canova, D., Lorenzatti, S., Peruzzi, D., Rabasa, J. y García, F. (2005). Diagnóstico de fertilización nitrogenada para maíz en siembra directa. Actas VIII Congreso Nacional de Maíz. pp. 230-233.

Binford, G. D., Blackmer, A. M. y El-hout, N. M. (1990). Tissue test for excess nitrogen during corn production. Agronomy Journal, 82(1), 124-129. https://doi.org/10.2134/agronj1990.00021962008200010027x

Binford, G. D., Blackmer, A. M. y Meese, B. G. (1992). Optimal concentrations of nitrate in cornstalks at maturity. Agronomy Journal, 84(5), 881-887. https://doi.org/10.2134/agronj1992.00021962008400050022x

Blackmer, T. M. y Schepers, J. S. (1994). Techniques for monitoring crop nitrogen status in corn. Communications in Soil Science and Plant Analysis, 25, 1791-1800. https://doi.org/10.1080/00103629409369153

Bonelli, L. E., Sainz Rozas, H., Echeverría, H. E. y Barbieri, P. A. (2017). Fuente y momento de aplicación de nitrógeno en maíz bajo siembra directa en Balcarce. Ciencia del Suelo, 36(1), 88-98.

Bray, R. H. y Kurtz, L. T. (1945). Determination of total, organic, and available forms of phosphorus in soils. Soil Science, 59(1), 39-46. https://doi.org/1097/00010694-194501000-00006

Brouder, S. M., Mengel, D. B. y Hofmann, B. S. (2000). Diagnostic efficiency of the blacklayer stalk nitrate and grain nitrogen tests for corn. Agronomy Journal, 92(6), 1236–1247. https://doi.org/10.2134/agronj2000.9261236x

Cassman, K. G., Dobermann, A., Cruz, P. C. S., Gines, G. C., Samson, M. I., Descalsota, J. P., Alcantara, J. M., Dizon, M. A. y Olk, D. C. (1996). Soil organic matter and the indigenous nitrogen supply of intensive irrigated rice systems in the tropics. Plant and Soil, 182, 267-278. https://doi.org/10.1007/BF00029058

Castellarín, J., Ferraguti, F. y Andriani, J. (2010). Environmental characterization and determination of the yield of maize during the 2009/10 campaign in Oliveros (Santa Fe). To improve production 44. INTA Oliveros, Argentina.

Ciampitti, I. A. y Vyn, T. J. (2012). Physiological perspectives of changes over time in maize yield dependency on nitrogen uptake and associated nitrogen efficiencies: A review. Field Crops Research, 133, 48-67. https://doi.org/10.1016/j.fcr.2012.03.008

Correndo, A. A., Gutiérrez-Boem, F. H., García, F. O., Alvarez, C., Alvarez, C., Angeli, A., Barbieri, P., Barraco, M., Berardo, A., Boxler, M., Calviño, P., Capurro, J. E., Carta, H., Caviglia, O., Ciampitti, I. A., Díaz-Zorita, M., Díaz- Valdéz, S., Echeverría H. E., Espósito, G., ..., Salvagiotti, F. (2021). Attainable yield and soil texture as drivers of maize response to nitrogen: A synthesis analysis for Argentina. Field Crops Research, 273, 108299. https://doi.org/10.1016/j.fcr.2021.108299

Correndo, A. A., Salvagiotti, F., García, F. O. y Gutiérrez-Boem, F. H. (2017). A modification of the arcsine–log calibration curve for analysing soil test value–relative yield relationships. Crop & Pasture Science, 68, 297–304. https://doi.org/10.1071/CP16444.

Crespo, C., Martínez, R. D., Wyngaard, N., Divito, G., Martínez Cuesta, N. y Barbieri, P. (2022). Nitrogen diagnosis for double-cropped maize. European Journal of Agronomy, 140, 126600. https://doi.org/10.1016/j.eja.2022.126600

Della Maggiora, A. I., Irigoyen, A., Gardiol, J. M., Caviglia, O. y Echarte, L. (2003). Evaluación de un modelo de balance de agua en el suelo para el cultivo de maíz. Revista Argentina de Agrometeorología, 2, 167-176.

Friedrich, J. W. Schrader, L. E. y Nordheim, E. V. (1979). N deprivation in maize during grain-filling I. accumulation of dry matter, nitrate-N and sulfate-S. Agronomy Journal, 71 (3), 461-465. https://doi.org/10.2134/agronj1979.00021962007100030020x

Graham, R. F., Greer, K. D., Villamil, M. B., Nafziger, E. D. y Pittelkow, C. M. (2018). Enhanced- efficiency fertilizer impacts on yield-scaled nitrous oxide emissions in maize. Soil Science Society of America Journal, 82 (6), 1469–1481. https://doi.org/10.2136/sssaj2018.05.0196

Greub, C. E., Roberts, T. L., Slaton, N. A., Kelley, J. P. y Gbur, E. E. (2018). Evaluating tissue tests to improve nitrogen management in furrow-irrigated mid-South corn production. Agronomy Journal, 110 (4), 1-9. https://doi.org/10.2134/agronj2017.12.0707.

Jung, S., Rickert, D. A., Deak, N. A., Aldin, E. D., Recknor, J., Johnson, L. A. y Murphy, P. A. (2003). Comparison of Kjeldahl and Dumas methods for determining protein contents of soybean products. Journal of the American Oil Chemists´ Society, 80 (12), 1169–1173. https://doi.org/10.1007/s11746-003-0837-3

Keeney, D. R. y Nelson, D. W. (1983). Nitrogen-inorganic forms. In: A. L. Page, R. H. Miller and D. R. Keeney (Eds.). Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties (pp. 643-698). American Society of Agronomy - Soil Science Society of America, Madison, WI.

Lam, S. K., Wille, U., Hu, H.-W., Caruso, F., Mumford, K., Liang, X., Baobao, P., Malcolm, B., Roessner, U., Suter, H., Stevens, G., Walker, C., Tang, C., He, J-Z. y Chen, D. (2022). Next-generation enhanced-efficiency fertilizers for sustained food security. Nature Food, 3 (8), 1-6. https://doi.org/10.1038/s43016-022-00542-7

Maharjan, B., Rosen, C. J., Lamb, J. A. y Venterea, R. T. (2016). Corn response to nitrogen management under fully-irrigated vs. water-stressed conditions. Agronomy Journal, 108 (6), 2089–2098. https://doi.org/10.2134/agronj2016.01.0006

Maltese, N. E., Carciochi, W. D., Caviglia, O. P., Sainz Rozas, H. R., García, M., Lapaz, A. O., Ciampitti, I. A. y Reussi Calvo, N. I. (2024). Assesing the effect of split and additional late N fertilisation on N economy of maize. Field Crops Research, 308 (March), 109279. https://doi.org/10.1016/j.fcr.2024.109279

Maltese, N. E., Melchiori, R. J. M., Maddoni, G. A., Ferreyra, J. M. y Caviglia, O. P. (2019). Nitrogen economy of early and late-sown maize crops. Field Crops Research, 231, 40-50. https://doi.org/10.1016/j.fcr.2018.11.007

Orcellet, J. M., Reussi Calvo, N. I., Sainz Rozas, H. R., Wyngaard, N. y Echeverría, H. E. (2017). Anaerobically incubated nitrogen improved nitrogen diagnosis in corn. Agronomy Journal, 109(1), 1–8. https://doi.org/10.2134/agronj2016.02.0115

Pearce, A. W, Slaton, N. A., Lyons, S. E., Bolster, C. H., Bruulsema, T. W., Grove, J. H., Jones, J. D., McGrath, J. M., Miguez, F. E., Nelson, N. O., Osmond, D. L., Parvej, M. R., Pena-Yewtukhiw, E. M. y Spargo, J. T. (2022). Defining relative yield for soil test correlation and calibration trials in the Fertilizer Recommendation Support Tool. Soil Science Society of America Journal, 86 (4), 1338–1353. https://doi.org/10.1002/saj2.20450

R Core Team. (2014). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org (accessed 30 Nov. 2015).

Reussi Calvo, N. I., Studdert, G. A., Calandroni, M. B., Diovisalvi, N. V., Cabria, F. N. y Berardo, A. (2014). Nitrógeno incubado en anaerobiosis y carbono orgánico en suelos agrícolas de Buenos Aires. Ciencia del Suelo, 32(2), 189-196.

Reussi Calvo, N. I., Wyngaard, N., Orcellet, J. M., Sainz Rozas, H. y Echeverría, H. (2018). Predicting Field-Apparent Nitrogen Mineralization from Anaerobically Incubated Nitrogen. Soil Science Society of America Journal, 82(2), 502-508. https://doi.org/10.2136/sssaj2017.11.0395

Ritchie, S. W. y Hanway, J. J. (1982). How a corn plant develops. Iowa State University of Science and Technology. Cooperative Extension Service, Iowa, EEUU. Special Report Nº48. pp. 24.

Sainz Rozas, H. R., Calviño, P. A., Echeverría, H. E., Barbieri, P. A. y Redolati, M. (2008). Contribution of anaerobically mineralized nitrogen to the reliability of planning or presidedress soil nitrogen test in maize. Agronomy Journal, 100(4), 1020-1025. https://doi.org/10.2134/agronj2007.0077

Sainz Rozas, H. R., Echeverría, H. E. y Angelini, H. (2011). Organic carbon and pH levels in agricultural soils of the pampa and extra-pampean regions of Argentina. (In Spanish, with English abstract.) Ciencia del Suelo, 29, 29-37.

Sainz Rozas, H. R., Echeverría, H. E. y Barbieri, P. A. (2004). Nitrogen balance is affected by application time and nitrogen fertilizer rate in irrigated no-tillage maize in Argentina. Agronomy Journal, 96(6), 1622-1631. https://doi.org/10.2134/agronj2004.1622

Sainz Rozas, H. R., Echeverría, H. E., Herfurtth, E. y Studdert, G. A. (2001). Nitrato en la base del tallo de maíz II. Diagnóstico de la nutrición nitrogenada. Ciencia del Suelo, 19(2), 125-135.

Sutradhar, A. K., Kaiser, D. E. y Fernández, F. G. (2017). Does total nitrogen/sulfur ratio predict nitrogen or sulfur requirement for corn? Soil Science Society of America Journal, 81(3), 564–577. https://doi.org/10.2136/sssaj2016.10.0352

Thomas, G. W. y Hargrove, W. L. (1984). The chemistry of soil acidity. En F. Adams (Ed). Soil acidity and liming (pp. 3-56). 12(2). https://doi.org/10.2134/agronmonogr12.2ed.c1

Uhart S. A. y Echeverría H. E. (2000). Diagnóstico de la fertilización. En F. H. Andrade y V.O. Sadras (Eds), Bases para el manejo del maíz, el girasol y la soja (pp. 235-268). EEA INTA Balcarce - Facultad de Ciencias Agrarias UNMdP.

Walkley, A. y Black, Y. (1934). An examination of the Degtjareff method for determining soil organic matter and proposed codification of the chromic acid titration method. Soil Science, 37, 29–38. https://doi.org/10.1097/00010694-193401000-00003

Wilhelm, W, Varvel, G. E. y Schepers, J. S. (2005). Corn stalk nitrate concentration profile. Agronomy Journal, 97(6), 1502–1507. https://doi.org/10.2134/agronj2005.0085

Wyngaard, N., Crespo, C., Angelini, H., Eyherabide, M., Larrea, G., Reussi Calvo, N. I., Carciochi, W. y Sainz Rozas, H. (2022). The effect of agriculture on topsoil carbon stocks is controlled by land use, climate, and soil properties in the Argentinean Pampas. CATENA, 212, 106126. https://doi.org/10.1016/j.catena.2022.106126

Published

27-06-2025

How to Cite

Iglesias, M. P., Orcellet, J. M., Sainz Rozas, H., Wyngaard, N., Reussi Calvo, N., & Echeverría, H. (2025). ANALYSIS OF GRAIN AND BASAL STALK NITROGEN CONTENT FOR NITROGEN DIAGNOSIS IN MAIZE. Ciencia Del Suelo, 43(1), 22–38. https://doi.org/10.64132/cds.v43i1.885

Issue

Section

Fertilidad de Suelos y Nutrición Vegetal