SOIL EVOLUTION ON RECENTLY ACCUMULATED AEOLIAN SEDIMENTS IN THE SEMIARID

Authors

  • Micaela Gisel Berger Instituto de Ciencias de la Tierra y Ambientales de La Pampa (INCITAP, CONICET-UNLPam)
  • Daniel Eduardo Buschiazzo
  • Rocío Noelia Comas
  • Laura Antonela Iturri

Keywords:

Pedogenesis, soil organic carbon, wind erosion, ustic

Abstract

There is evidence that the Caldenal ecosystem of the Semiarid Region of Argentina (SAR) acts as a sink of wind sediments of different sources. The existence of a volcanic ash layer deposited in 1932 during the eruption of the Quizapú volcano (Chile) in the subsoil of the Caldenal ecosystem, becomes a precise chronological index that allows to quantify the formation rate of the superficial horizon (A), which overlies this layer. This horizon has been formed on aeolian sediments accumulated by successive wind deposition events over the last 92 years. In order to evaluate the degree of pedogenesis of this A-horizon, samples were collected along two parallel SW-NE oriented transects in the area of major volcanic ash deposition detectable at the present. The results indicate that A presented a higher soil formation rate (0.12 cm yr-1 on average), greater thickness (10.7 cm on average), finer texture (silt predominance), moderate to strong grade structure, higher organic C concentration (4.5% on average) and lower erodible fraction (EF, 18.6% on average) in sites located to the E, while to the W it recorded a lower soil formation rate (0.07 cm yr-1 on average), lower thickness (6.7 cm on average), coarser texture (sand predominance), moderate to weak grade structure, lower organic C concentration (3% on average) and higher EF (25.1% on average). The results show a trend of higher degree of pedogenesis towards the E, coinciding with the existence of texturally finer aeolian sediments and higher average annual precipitation in that direction.

References

Aimar, S. L. y Buschiazzo, D. E. (2012). Erosión eólica: Procesos y Predicción. En Golberg, A. D. y Kin, A. G. (Eds) (pp. 21-32). Viento, Suelo y Plantas. Ediciones INTA.

Aimar, S. B., Méndez, M., Funk, R. y Buschiazzo, D. E. (2012). Soil properties related to potential particulate matter emissions (PM10) of sandy soils. Aeolian Research 3, 437-443.

Avecilla, F., Panebianco, J. E., Iturri, L. A., De Oro, L. A., Comas, R. N. y Buschiazzo, D. E. (2023). Dust deposition in agricultural landscapes: Temporal and spatial dynamics along a transect into a natural forest patch. Aeolian Research, 63-65, 100887. https://doi.org/10.1016/j.aeolia.2023.100887

Belmonte, M. L., Casagrande, G. A., Deanna, M. E., Olguín Páez, E., Farrell, A. y Babinec, F. J. (2016). Estadísticas Agroclimáticas de la EEA Anguil Ing. Agr. Guillermo Covas. Ediciones INTA, Anguil. https://repositorio.inta.gob.ar/handle/20.500.12123/15625

Berger, M. G., Iturri, L. A. y Buschiazzo, D. E. (2023). Evolución del suelo en sedimentos eólicos de depositación reciente en el semiárido. Efecto de espesores variables. Ciencia del Suelo, 41(1). https://ojs.suelos.org.ar/index.php/cds/article/view/769

Buschiazzo, D. E. y Taylor, V. (1993). Efectos de la erosión eólica sobre algunas propiedades de suelos de la región Semiárida Pampeana Central. Ciencia del Suelo 10, 46-53. https://www.suelos.org.ar/publicaciones/vol_10y11n1y2/Buschiazzo.pdf

Buschiazzo, D. E., Estelrich, H. D., Aimar, S. B., Viglizzo, E. y Babinec, F. J. (2004). Soil texture and tree coverage influence on organic matter. Journal of Range Management, 57, 511-516.

Buschiazzo D. E., Roberto Z. E., Colazo J. C. y Panebianco J. E. (2015). Provincia de La Pampa. En: Casas R. y G. Albarracín (Eds.). El deterioro del suelo y del ambiente en Argentina. FECIC.

Camilión, C. M., Zárate, M. A. y Iasi, R. R. (1990). Granitoides, depósitos coluviales y desarrollo de suelos complejos en el Cerro El Sombrero, partido de Loberia, Buenos Aires. Ciencia del Suelo, 8: 211-221.

Chepil, W. S. (1962). A compact rotary sieve and the importance of dry sieving in physical analysis. Soil Science Society of America Proceedings, 26, 4–6. https://doi.org/10.2136/sssaj1962.03615995002600010002x.

Ciccolella, P., Caso, M. V., Gurevich, R. y Montenegro, I. (1998). El libro Geografía: Territorios y ambientes en la Argentina contemporánea. 3a ed., Aique, Buenos Aires.

Colazo, J. C. y Buschiazzo, D. E. (2010). Soil dry aggregate stability and wind erodible fraction in a semiarid environment of Argentina. Geoderma, 159, 228–236. https://doi.org/10.1016/j.geoderma.2010.07.016.

Conen, F. y Leifeld, J. (2014). A new facet of soil organic matter. Agriculture, Ecosystems and Environment. 185: 186-187. https://doi.org/10.1016/j.agee.2013.12.024

Cosentino, N. J., Gaiero, D. M., Torre, G., Pasquini, A. I., Coppo, R., Arce, J. M. y Vélez, G. (2020). Atmospheric dust dynamics in southern South America: A 14-year modern dust record in the loessic Pampean region. The Holocene, 30(4), 575-588.

Di Rienzo J. A., Casanoves F., Balzarini M. G., González L., Tablada M. y Robledo C. W. (2017). Grupo InfoStat. FCA, Universidad Nacional de Córdoba, Argentina. http://www.infostat.com.ar

Etchevehere, P. H. (1976). Normas de reconocimiento de suelos. Departamento de suelos, INTA, Buenos Aires, Argentina.

Hepper, E. N., Larroulet, M. S., Belmonte, V. y Urioste A. M. (2013). Propiedades edáficas de un suelo del caldenal pampeano en parches con diferente vegetación. Revista de la Facultad de Agronomía UNLPam, 2(23).

INTA, Gobierno de la Provincia de La Pampa y UNLPam. (1980). Inventario Integrado de los recursos naturales de la Provincia de la Pampa. Ediciones INTA.

Iturri, L. A., Avecilla, F., Hevia, G. G. y Buschiazzo, D. E. (2016). Comparing adjacent cultivated- and “virgin” soils in wind erosion affected environments can lead to errors in measuring soil degradation. Geoderma, 264, 42-53. https://doi.org/10.1016/j.geoderma.2015.09.017.

Iturri, L. A., Funk, R., Leue. M., Sommer, M. y Buschiazzo, D. E. (2017). Wind sorting affects differently the organo-mineral composition of saltating and particulate materials in contrasting texture agricultural soils. Aeolian Research, 28, 39–49. https://doi.org/10.1016/j.aeolia.2017.07.005.

Iturri, L. A., Funk, R., Sommer, M. y Buschiazzo, D. E. (2020). Elemental composition of wind-blown sediments from contrasting textured soils. Aeolian Research, 48, 1-9. https://doi.org/10.1016/j.aeolia.2020.100656

Larsson, W. (1937). Vulkanische Asche vom Ausbruch des chilenischen Vulkans Quizapú (1932) in Argentina gesammelt. Eine Studie über äolische Differentiation. Bulletin Geological Institution of Upsala, 26, 27-52.

Morici, E. F. A., Muiño W., Ernst, R., Berrueta, M. A., Urioste A. y Hepper E. (2009). Respuesta del pastizal del Caldenal a una quema controlada. En: Actas V Congreso Nacional, II Congreso del Mercosur y I Jornada Técnica de Productores Sobre Manejo de Pastizales Naturales. Corrientes, Argentina.132.

Munn. L. C., Nielsen G. A. y Mueggler, W. F. (1978). Relationships of soils to mountain and foothill range habitat rypes and foothill range habitat production types and production in western Montana. Soil Science Society of America Journal, 42, 135-139.

Norma IRAM-SAGPyA 29571-3:2011-(2017). Calidad ambiental – calidad del suelo. Determinación de materia orgánica en suelos. Parte 3 - Determinación de carbono orgánico oxidable por mezcla oxidante, escala micro.

Panebianco, J. E. y Buschiazzo, D. E. (2008). Wind erosion predictions with the Wind Erosion Equation (WEQ) using different climatic factors. Land Degradation and Development 19, 36–44.

Sayago, J. M., Collantes, M. M., Karlson, A. y Sanabria, J. (2001). Genesis and distribution of the late Pleistocene and Holocene loess of Argentina: a regional approximation. Quaternary International 76, 247–257.

Schaetzl, R. J., Bettis III, E. A., Crouvi, O., Fitzsimmons, K. E., Grimley, D. A., Hambach, U., Lehmkuhl, F., Marković, S. B., Mason, J. A., Owczarek, P., Roberts, H. M., Rousseau, D.-D., Stevens, T., Vandenberghe, J., Zárate, M., Veres, D., Yang, S. L., Zech, M., Conroy, J. L., Dave, A. K., Faust, D., Hao, Q. Z., Obreht, I., Prud’homme, C., Smalley, I., Tripaldi, A., Zeeden C. y Zech, R. (2018b). Approaches and challenges to the study of loess—Introduction to the LoessFest special issue. Quaternary Research 89, 563–618.

Shao, Y., Lu, H. (2000). A simple expression for wind erosion threshold friction velocity. Journalof Geophysical Research 105 (D17), 22437–22443. http://dx.doi.org/10.1029/2000JD900304

Steinke, I.; Funk, R.; Busse, J.; Iturri, L. A.; Kirchen, S.; Leue, M.; Möhler, O.; Schwartz, T.; Schnaiter, M.; Sierau, B.; Toprak, E.; Ullrich, R.; Ulrich, A.; Hoose, C. y Leisner, T. (2016). Ice nucleation activity of agricultural soil dust aerosols from Mongolia, Argentina and Germany. Journal of Geophysical Research – Atmospheres.121: 1-18. https://doi.org/10.1002/2016JD025160

Tarabini, M.; Gomez, F. y La Manna, L. (2019). Ceniza volcánica reciente como indicadora de retención de partículas en los suelos de la patagonia andina. Ciencia del Suelo, 37(1), 101-112. https://www.ojs.suelos.org.ar/index.php/cds/article/view/458

Wentworth, C. K. (1922). A scale of grade and class terms for clastic sediments. Journal of Geology, 30, 377-392. https://doi.org/10.1086/622910.

Zárate, M. A. (2007). Loess records | South America. In: Elias, S.A. (Ed.), Encyclopedia of Quaternary Science. Elsevier, 1466–1479.

Zárate, M. A. y Tripaldi, A. (2012). The aeolian system of central Argentina. Aeolian Research, 3, 401-417. https://doi.org/10.1016/j.aeolia.2011.08.002

Zárate, M. A. y Mehl, A. E. (2020). Materiales parentales de los suelos de la Llanura Pampeana: El aporte volcánico andino. En Imbellone, P y Barbosa, O. A. (Eds.) Suelos y Vulcanismo: Argentina (pp. 71-87). Asociación Argentina de la Ciencia del Suelo.

Published

30-12-2024

How to Cite

Berger, M. G., Buschiazzo, D. E., Comas, R. N., & Iturri, L. A. (2024). SOIL EVOLUTION ON RECENTLY ACCUMULATED AEOLIAN SEDIMENTS IN THE SEMIARID. Ciencia Del Suelo, 42(2). Retrieved from https://ojs.suelos.org.ar/index.php/cds/article/view/875

Issue

Section

Génesis, Clasificación, Cartografía y Mineralogía de Suelos