ORGANIC CARBON MINERALIZED IN SHORT AEROBIC INCUBATION PERIODS AS SOIL HEALTH INDICATOR
Keywords:
cropping systems, crop-pasture rotations, CO2 emission, incubation periodAbstract
Soil functioning is affected by agriculture. Therefore, sustainable soil use requires frequent soil health monitoring. Soil health indicators (ISE) allow to do soil health evaluation simply and periodically. The carbon (C) dioxide emission during short aerobic incubations (Cmin) could be used as an ISE. However, its performance as ISE has not been sufficiently evaluated. The objective of this work was to evaluate the sensitivity of Cmin at 2 (Cmin2), 4 (Cmin4), 6 (Cmin6), and 10 (Cmin10) days of incubation to the effect of different management practices and their relationship with total (COT), mineral associated (COA), particulate (COP), potentially mineralizable (C0), and potassium permanganate oxidizable (CoxP) organic C, anaerobically mineralized nitrogen (NAN), and aggregate stability of a Mollisol from the southeastern Buenos Aires province. We determined Cmin2, Cmin4, Cmin6, and Cmin10, COT, COA, COP, C0, CoxP, NAN, and EA (remnant mass of macroaggregates, MasaMAMV) in soil samples (0-5 and 5-20 cm) from a long-term experiment in Balcarce including crop-pasture rotations under conventional tillage and no-tillage (SD). As expected, the Cmin showed a similar pattern as the rest of the variables reflecting the effect of the different management practices with greater values observed under pasture and SD, especially at 0-5 and 0-20 cm. The ability of the Cmin to show the effect of the management practices evaluated increased with the increase of the duration of the incubation. The Cmin correlated (Pearson r) to COT, COP, C0, CoxP, NAN, and MasaMAMV (r=0.52 to r=0.96) (P<0.01) with coefficients increasing with the days of incubation. It is concluded that Cmin4 (r=0.59 to r=0.88) or Cmin6 (r=0.52 to r=0.93) could be used as adequate ISE. It is necessary to continue studying these relationships under contrasting soil, climate and management conditions.
References
Aparicio, V. y Costa, J. L. (2007). Soil quality indicators under continuous cropping systems in the Argentinean Pampas. Soil and Tillage Research, 96, 155-165. https://doi.org/10.1016/j.still.2007.05.006
Bassi, L., Tourn, S., Wyngaard, N., García, G. V., Crespo, C., Carciochi, W. D., Rivero, C., Sainz Rozas, H. R. y Studdert, G. A. (2022). Respiración en muestras de suelo re-humedecidas como indicador de salud edáfica. En: M. Castiglioni, P. Fernández y S. Vangeli (Eds.), Actas XXVIII Congreso Argentino de la Ciencia del Suelo (pp 994-998). Asociación Argentina de la Ciencia del Suelo.
Beare, M., Cabrera, M., Hendrix, P. y Coleman, D. (1994). Aggregate-protected and unprotected organic matter pool in conventional and no-tillage soils. Soil Science Society America Journal, 58(3), 787-795. https://doi.org/10.2136/sssaj1994.03615995005800030021x
Bünemann, E. K., Bongiorno, G., Bai, Z., Creamer, R. E., de Deyn, G., de Goede, R., Fleskens, L., Geissen, V., Kuyper, T. W., Mäder, P., Pulleman, M., Sukkel, W., van Groenigen, J. W. y Brussaard, L. (2018). Soil quality – A critical review. Soil Biology and Biochemistry, 120, 105-125. https://doi.org/10.1016/j.soilbio.2018.01.030
Cafaro-La-Menza, F. y Carciochi, W. D. (2023). Catch crops in the Argentinean Pampas: a synthesis-analysis on nutrient characteristics and their implications for a sustainable agriculture. Frontiers in Agronomy, 5, 1244057. https://doi.org/10.3389/fagro.2023.1244057
Cambardella, C. y Elliott, E. (1992). Particulate soil organic matter. Changes across a grassland cultivation sequence. Soil Science Society of America Journal, 56(3), 777-783. https://doi.org/10.2136/sssaj1992.03615995005600030017x
Cates, A., Ruark, M., Hedtcke, J. y Posner, J. (2016). Long-term tillage, rotation and perennialization effects on particulate and aggregate soil organic matter. Soil and Tillage Research, 155, 371-380. http://dx.doi.org/10.1016/j.still.2015.09.008
Crespo, C., O’Brien, P. L., Nunes, M. R., Ruis, S. J., Emmett, B. D., Rogovska, N., Malone, R. W., Cambardella, C. y Kovar, J. L. (2024). Contrasting soil management systems had limited effects on soil health and crop yields in a North Central US Mollisol. Soil Science Society of America Journal, 1-13. https://doi.org/10.1002/saj2.20716
Culman, S. W., Snapp, S. S., Freeman, M. A., Schipanski, M. E., Beniston, J., Lal, L., Drinkwater, L. E., Franzluebbers, A. J., Glover, J. D., Grandy, A. S., Lee, J., Six, J., Maul, J. E., Mirksy, S. B., Spargo, J. J. y Wander, M. M. (2012). Permanganate oxidizable carbon reflects a processed soil fraction that is sensitive to management. Soil Science Society of America, 76(2), 494-504. https://doi.org/10.2136/sssaj2011.0286
Culman, S. W., Snapp, S. S., Green, J. M. y Gentry, L. E. (2013). Short- and long-term labile soil carbon and nitrogen dynamics reflect management and predict corn agronomic performance. Agronomy Journal, 105(29), 493-502. https://doi.org/10.2134/agronj2012.0382
Curtin, D., Beare, M. H., Scott, C. L., Hernández-Ramírez, G. y Meenken, E. D. (2014). Mineralization of soil carbon and nitrogen following physical disturbance: a laboratory assessment. Soil Science Society of America Journal, 78, 925-935. https://doi.org/10.2136/sssaj2013.12.0510
Diovisalvi, N. V., Studdert, G. A., Reussi-Calvo, N., Domínguez, G. F. y Berardo, A. (2014). Estimating soil particulate organic carbon through total soil organic carbon content. Ciencia del Suelo, 32(1), 85-94. http://www.suelos.org.ar/publicaciones/vol_32n1/85-94%20pags%201CS%20289%20Diovisalvi%202014.pdf
Domínguez, G. F., Diovisalvi, N. V., Studdert, G. A. y Monterubbianesi, M. G. (2009). Soil organic C and N fractions under continuous cropping with contrasting tillage systems on Mollisols of the Southeastern Pampas. Soil and Tillage Research, 102, 93-100. https://doi.org/10.1016/j.still.2008.07.020
Domínguez, G., García, G., Studdert, G., Agostini, M., Tourn, S. y Domingo, M. (2016). Is anaerobic mineralizable nitrogen suitable as soil quality/health indicator? Spanish Journal of Soil Science, 6, 82-97. https://doi.org/10.3232/SJSS.2016.V6.N2.01
Ernst, O. y Siri-Prieto, G. (2009). Impact of perennial pasture and tillage systems on carbon input and soil quality indicators. Soil and Tillage Research, 105, 260-268. https://doi.org/10.1016/j.still.2009.08.001
Franzluebbers, A. J. (2016). Should soil testing services measure soil biological activity? Agricultural and Environmental Letters, 1, 150009. https://doi.org/10.2134/ael2015.11.0009
Franzluebbers, A. J. (2020). Soil carbon and nitrogen mineralization after the initial flush of CO2. Agricultural and Environmental Letters, 5, e20006. https://doi.org/10.1002/ael2.20006
Franzluebbers, A. J. y Hendrickson, J. R. (2024). Should we consider integrated crop-livestock systems for ecosystem services, carbon sequestration, and agricultural resilience to climate change? Agronomy Journal, 116(2), 415-432. https://doi.org/10.1002/agj2.21520
Franzluebbers, A., Sawchik, J. y Taboada, M. (2014). Agronomic and environmental impacts of pasture-crop rotation in temperate North and South America. Agriculture, Ecosystems, and Environment, 190, 18-26. https://doi.org/10.1016/j.agee.2013.09.017
Franzluebbers, A. J., Haney, R. L., Honeycutt, C. W., Schomberg, H. H. y Hons, F. M. (2000). Flush of carbon dioxide following rewetting of dried soil relates to active organic pools. Soil Science Society of America Journal, 64, 613-623. https://doi.org/10.2136/sssaj2000.642613x
García, G. V., Tourn, S. N., Roldán, M. F., Mandiola, M. y Studdert, G. A. (2020a). Simplifying the determination of aggregate stability indicators of Mollisols. Communications in Soil Science and Plant Analysis, 51(4), 481-490. https://doi.org/10.1080/00103624.2020.1717513
García, G. V., Wyngaard, N., Reussi-Calvo, N. I., San Martino, S., Covacevich, F. y Studdert, G. A. (2020b). Soil survey reveals a positive relationship between aggregate stability and anaerobic mineralizable nitrogen. Ecological Indicators, 117, 106640. https://doi.org/10.1016/j.ecolind.2020.106640
González-Sosa, M., Sierra, C. A., Quincke, J. A., Baethgen, W. E., Trumbore, S. y Pravia, M. V. (2024). High capacity of integrated crop–pasture systems to preserve old soil carbon evaluated in a 60-year-old experiment. Soil, 10, 467–486. https://doi.org/10.5194/soil-10-467-2024
Haney, R. L., Brinton, W. H. y Evans, E. (2008). Estimating soil carbon, nitrogen, and phosphorus mineralization from short‐term carbon dioxide respiration. Communications in Soil Science and Plant Analysis, 39, 2706-2720. https://doi.org/10.1080/00103620802358862
Instituto Nacional de Tecnología Agropecuaria (INTA). (s.f.). Agrometeorología Balcarce. INTA. Recuperado en febrero de 2014, de https://inta.gob.ar/paginas/agrometeorologia-balcarce
Instituto Nacional de Tecnología Agropecuaria (INTA). (1979). Cartas de suelo de la República Argentina. Hoja 3757-31 Balcarce, Argentina. INTA.
Keeney, D. R. (1982). Nitrogen-availability indexes. En A. L. Page, R. H. Miller y D. R. Keeney (Eds.), Methods of soil analysis. Part 2. (2a ed., pp. 711-733). Agronomy Monograph 9. American Society of Agronomy – Soil Science Society of America.
Keeney, D. R. y Nelson, D. W. (1982). Nitrogen inorganic forms. En A. L. Page, R. H. Miller y D. R. Keeney (Eds.), Methods of soil analysis. Part 2. (2a ed., pp. 643-698). Agronomy Monograph 9. American Society of Agronomy – Soil Science Society of America.
Ladoni, M., Basir, A. y Kravchenko, A. (2015). Which soil carbon fraction is the best for assessing management differences? A statistical power perspective. Soil Science Society of America Journal, 79(4), 848–857. https://doi.org/10.2136/sssaj2014.10.0426
Lal, R. (2019). Eco-intensification through soil carbon sequestration: Harnessing ecosystem services and advancing sustainable development goals. Journal of Soil and Water Conservation, 74, 55A-61A. https://doi.org/10.2489/jswc.74.3.55a
Mikha, M. y Rice, C. (2004). Tillage and manure effects on soil and aggregate-associated carbon and nitrogen. Soil Science Society of America Journal, 68(3), 809-816. https://doi.org/10.2136/sssaj2004.8090
Moebius-Clune, B. N., Moebius-Clune, D. J., Gugino, B. K., Idowu, O. J., Schindelbeck, R. R., Ristow, A. J., van Es, H. M., Thies, J. E., Shayler, H. A., McBride, M. B., Kurtz, K. S. M., Wolfe, D. W. y Abawi, G. S. (2016). Comprehensive Assessment of Soil Health – The Cornell Framework (3.2 ed.). Cornell University.
Nelson, D. y Sommers, L. (1982). Total carbon, organic carbon, and organic matter. En A. L. Page, R. H. Miller y D. R. Keeney (Eds.), Methods of soil analysis. Part 2. (2a ed., pp. 539-579). Agronomy Monograph 9. American Society of Agronomy – Soil Science Society of America.
Novelli, L., Caviglia, O. y Piñeiro, G. (2017). Increased cropping intensity improves crop residue inputs to the soil and aggregate-associated soil organic carbon stock. Soil and Tillage Research, 165, 128-136. http://dx.doi.org/10.1016/j.still.2016.08.008
Ogle, S. M., Alsaker, C., Baldock, J. F., Bernoux, M., Breidt, F. J., McConkey, B., Regina, K. y Vázquez-Amabile, G. G. (2019). Climate and soil characteristics determine where no-till management can store carbon in soils and mitigate greenhouse gas emissions. Science Reports, 9, 11665. https://doi.org/10.1038/s41598-019-47861-7
Olsson, L., Cotrufo, F., Crews, T., Franklin, J., King, A., Mirzabaev, A., Scown, M., Tengberg, A., Villarino, S. y Wang, Y. (2023). The State of the World’s Arable Land. Annual Review of Environment and Resources, 48, 451–75. https://doi.org/10.1146/annurev-environ-112320-113741
Powlson, D., Stirling, c., Jat, m., Gerard, B., Palm, C., Sánchez, P. y Cassman, K. (2014). Limited potential of no-till agriculture for climate change mitigation. Nature Climate Change, 4, 678-673. https://doi.org/ 10.1038/nclimate2292
Puget, P. y Lal, R. (2005). Soil organic carbon and nitrogen in a mollisol in central Ohio as affected by tillage and land use. Soil and Tillage Research, 80, 201-213. https://doi.org/10.1016/j.still.2004.03.018
R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Retrieved from https://www.R- project.org/
Rabot, E., Wiesmeier, M., Schlüter, S. y Vogel, H. J. (2018). Soil structure as an indicator of soil functions: a review. Geoderma, 314, 122–137. https://doi.org/10.1016/j.geoderma.2017.11.009
Reussi Calvo, N. I., Wyngaard, N., Orcellet, J. M., Sainz-Rozas, H. R. y Echeverría, H. E. (2018). Predicting field-apparent nitrogen mineralization from anaerobically incubated nitrogen. Soil Science Society of America Journal, 82, 502–508. https://doi.org/10.2136/sssaj2017.11.0395
Rivero, C., Tourn, S. N., García, G. V., Videla, C. C., Domínguez, G. F. y Studdert, G. A. (2020). Nitrogen mineralized in anaerobiosis as indicator of soil aggregate stability. Agronomy Journal, 112(1), 592-607. https://doi.org/10.1002/agj2.20056.
Rodriguez, S., Baeza, M. D., García, G. V., Domínguez, G. F., Clemente, N. L. y Studdert G. A. (2022). Permanganate oxidizable carbon, new soil health indicator for Mollisols of the southeastern Argentinean Pampas? Communications in Soil Science and Plant Analysis, 2070631. https://doi.org/10.1080/00103624.2022.2070631
Six, J., Bossuyt, H., Degryze, S. y Denef, K. (2004). A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil and Tillage Research, 79, 7-31. https://doi.org/10.1016/j.still.2004.03.008
Sheehy, J., Regina, K., Alakuku, L. y Six, J. (2015). Impact of no-till and reduced tillage on aggregation and aggregate-associated carbon in Northern European agroecosystems Soil and Tillage Research, 150, 107-113. http://dx.doi.org/10.1016/j.still.2015.01.015
Soil Survey Staff. (2014). Keys to soil taxonomy. (12a ed.). United States Department of Agriculture-Natural Resources Conservation Service.
Studdert, G. A., Echeverría, H. E. y Casanovas, E. M. (1997). Crop-pasture rotation for sustaining the quality and productivity of a typic argiudoll. Soil Science Society of America Journal, 61(5), 1466-1472. https://doi.org/10.2136/sssaj1997.03615995006100050026x
Studdert, G. A., Domingo, M. N., García, G. V., Monterubbianesi, M. G. y Domínguez, G. F. (2017). Carbono orgánico del suelo bajo sistemas de cultivo contrastantes y su relación con la capacidad de proveer nitrógeno. Ciencia del Suelo, 35(2), 285-300. http://www.suelos.org.ar/publicaciones/volumen3522017/285-300%20p%C3%A1gs%20CS%20481%20Studdert%20et%20al%20nov%2027.pdf
Thornthwaite, C. W. (1948). An approach toward a rational classification of climate. Soil Science, 66(1), 55-94.
Tourn, S. N. (2020). Distribución y protección física de la materia orgánica en un molisol del Sudeste Bonaerense: efecto de sistemas de cultivos [Tesis de Doctor en Ciencias Agrarias, Universidad Nacional de Mar del Plata]. Base IPUIB, Unidad Integrada Balcarce. http://hdl.handle.net/20.500.12123/8272
Tourn, S. N., Videla, C. C. y Studdert, G. A. (2019). Ecological agriculture intensification through crop-pasture rotations does improve aggregation of Southeastern-Pampas Mollisols. Soil and Tillage Research, 195, 104411. https://doi.org/10.1016/j.still.2019.104411
Tourn, S. N., Videla, C. C. y Studdert, G. A. (2022). Actividad microbiológica global como indicador de salud edáfica en molisoles del Sudeste Bonaerense. Ciencia del Suelo, 40(1), 67-80. https://www.suelos.org.ar/publicaciones/Volumen40n1/689-FINAL%20Texto%20del%20art%C3%ADculo-3893-1-6-20211206.pdf
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Santiago Tourn, Cecilia Videla, Camila Rivero, Gisela garcía, Débora Ricciuto, Silvia Rodriguez, Guillermo Alberto Studdert

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.