MESOINVERTEBRATE SUCCESSION IN TWO CONTRASTING COMPOST PILES
Keywords:
mites, springtails, nutrients, agro-industrial wastesAbstract
There is a significant lack of knowledge about the communities of mesoinvertebrates associated with the composting process. Here we evaluate the presence of mesoinvertebrates during the the composting process in two compost piles: 1) a pile of spent substrate from oyster mushroom cultivation (S), and 2) a pile of spent substrate from oyster mushroom cultivation + beer bagasse (S + B), without replicates. Composting was carried out in covered piles with weekly turnings. Temperature and humidity were estimated weekly in the center of each pile. Samples were taken at 0, 20, 30, 40, 60, 100, and 120 days from the center of the pile to estimate pH, conductivity, organic C, total Kjeldahl N, and extractable Olsen P. Additionally, samples of the material were placed in Berlese funnels to obtain the invertebrates. Finally, the size and density of microplastics (<5 mm) were determined at the beginning and end of the composting process for both piles. The composting process lasted 120 days. The thermophilic phase lasted 30-40 days and the temperature exceeded 45°C. In both piles, the disappearance of mesoinvertebrates coincided with the thermophilic stage. A peak in mesoinvertebrate density was observed three weeks after the end of the thermophilic stage. The dominant groups were Collembola both in S and Acari in S + B compost piles. Our work verified the presence of 0.8-3.8 microplastics particles per gram of compost in both piles, which may negatively interact with the mesoinvertebrates due to their size (0.02-1.4 mm). We need to carry out more studies on the dynamics of invertebrate communities and microplastics during the controlled decomposition processes of composting, as well as the interaction between them.
References
Ataíde, L. M. S., Resende, M. C., Lopes, S. R., Catapreta, C. A. A., Simões, D. A. y Tavares, K. G. (2020). Communities of arthropods associated with the composting process of the organic solid waste produced in a landfill in Brazil. Environmental Monitoring and Assessment, 192(8), 492. https://doi.org/10.1007/s10661-020-08467-z
Azim, K., Soudi, B., Boukhari, S., Perissol, C., Roussos, S. y Thami Alami, I. (2018). Composting parameters and compost quality: a literature review. Organic Agriculture, 8, 141–158. https://doi.org/10.1007/s13165-017-0180-z
Bokhorst, S., Veen, G. F., Sundqvist, M., De Long, J. R., Kardol, P. y Wardle, D. A. (2018). Contrasting responses of springtails and mites to elevation and vegetation type in the sub-Arctic. Pedobiologia - Journal of Soil Ecology, 67, 57–64. https://doi.org/10.1016/j.pedobi.2018.02.004
Bottone, A., Boily, J. F., Shchukarev, A., Andersson, P. L. y Klaminder, J. (2022). Sodium hypochlorite as an oxidizing agent for removal of soil organic matter before microplastics analyses. Journal of Environmental Quality, 51(1), 112–122. https://doi.org/10.1002/jeq2.20321
Bradney, L., Wijesekara, H., Niroshika Palansooriya, K., Obadamudalige, N., Bolan, N. S., Sik Ok, Y., Rinklebe, J., Kim, K. y Kirkham, M. B. (2019). Particulate plastics as a vector for toxic trace-element uptake by aquatic and terrestrial organisms and human health risk. Environment International, 131, 104937. https://doi.org/10.1016/j.envint.2019.104937
Bremmer, G. (1990). A Berlese funnel for the rapid extraction of grassland surface macro-arthropods. New Zealand Entomologist, 13, 76–80.
Bremner, J. M. y Mulvaney, C.S. (1982). Nitrogen total. En: Page, A. L., Miller, R. H., Keeney, D. R. (Eds.), Methods of Soil Analysis, Part 2 - Chemical and Microbiological Properties (2a ed., Agron, Monograph 9) (pp 595-624). ASA, SSSA.
Brust, G. E. (2019). Chapter 9 - Management Strategies for Organic Vegetable Fertility, En: Biswas, D., Micallef, S. A. (Eds.). Safety and Practice for Organic Food, Academic Press. https://doi.org/10.1016/B978-0-12-812060-6.00009-X
Chahartaghi, M., Langel, R., Scheu, S. y Ruess L. (2005). Feeding guilds in Collembola based on nitrogen stable isotope ratios. Soil Biology and Biochemistry, 37(9): 1718–1725. https://doi.org/10.1016/j.soilbio.2005.02.006
Cole, M., Lindeque, P., Fileman, E., Halsband, C. y Galloway, T. S. (2015). The impact of polystyrene microplastics on feeding, function and fecundity in the marine copepod Calanus helgolandicus. Environmental Science & Technology, 49(2), 1130-7. https://doi.org/10.1021/es504525u
Dias, l. C. (2012). Produção de composto orgânico a base de casca do fruto de cupuaçuzeiro e sua utilização na formação de mudas de tucumãzeiro. Dissertação para Mestrado em Agricultura no Trópico Úmido. Instituto Nacional de Pesquisa da Amazônia, Manaus, Brasil.
dos Santos Araújo, E. C., Pereira da Silva, M. M., da Silva, A. V., Teixeira Barros, A. y Duarte Leite, V. (2021). Diversity of mesoinvertebrates associated with aerobic treatment of home organic solid waste. Research, Society and Development, 10(1), e59710112173. https://doi.org/10.33448/rsd-v10i1.12173
Ferreiro, N. A., Satti, P. y Mazzarino, M. J. (2023). Soil invertebrate and microbial activity rehabilitation by compost application after road construction and volcanic disturbance. Restoration Ecology, 31(8), e13964. https://doi.org/10.1111/rec.13964
Haouas, A., El Modafar, E., Douira, A., Ibnsouda-Koraichi, S., Filali-Maltouf, A., Moukhli, A. y Amir S. (2021). Evaluation of the nutrients cycle, humification process, and agronomic efficiency of organic wastes composting enriched with phosphate sludge. Journal of Cleaner Production, 302, 127051. https://doi.org/10.1016/j.jclepro.2021.127051
Hendrychová, M., Sálek, M., Tajovský, K., Rehor, M. (2012). Soil properties and species richness of invertebrates on afforested sites after brown coal mining. Restoration Ecology, 20, 561–567. https://doi.org/10.1111/j.1526-100X. 2011.00841.x
Iglesias Jiménez, E. y Pérez García, V. (1992). Relationships between organic carbon and total organic matter in municipal solid wastes and city refuse composts. Bioresource Technology, 41(3), 265–272. https://doi.org/10.1016/0960-8524(92)90012-M
Kumari, R. (2017). Biodiversity of compost mesofauna as an indicator of the composting. Biospectra, 12(2), 81–86.
Krantz G. W. y Walter, D. E. (2009). A Manual of Acarology. Third Edition. Texas Tech University Press. Lubbock, Texas.
Mazzarino, M. J. y Satti, P. (Eds.) (2012). Compostaje en la Argentina: Experiencias de Producción, Calidad y Uso. UNRN-OGE, Buenos Aires.
Mayer, F. A. (2009). Produção e qualidade biológica e química de diferentes vermicompostos para a produção de cenouras rumo à sustentabilidade dos agroecossistemas. Dissertação para Mestrado em Ciências. Universidade Federal de Pelotas, Pelotas, Brasil.
Momo, F. R. y Falco, L. B. (2009). Biología y ecología de la fauna del suelo. First Edition. Imago Mundi. Buenos Aires, Argentina.
Neher, D. A., Weicht, T. R., Bates, S. T., Leff, J. W. y Fierer N. (2013). Changes in Bacterial and Fungal Communities across Compost Recipes, Preparation Methods, and Composting Times. PLOS ONE, 8, e79512. https://doi.org/10.1371/journal.pone.0079512
Olsen, S. R. y Sommers, L. E. (1982). Phosphorus. En: Page, A. L., Miller, R. H., Keeney, D. R. (Eds.), Methods of Soil Analysis, Part 2 - Chemical and Microbiological Properties (2a ed., Agron, Monograph 9) (pp 403-430). ASA, SSSA.
Oni, O. E., Oloruntoba, E. O., Sridhar, M. K., Hammed, T. B., Ibrahim, K. T. y Popoola, K. O. (2019). Macro-invertebrate population changes during composting of organic waste at Alesinloye market Ibadan. International Journal of Agriculture Innovation, Technology and Globalisation. https://doi.org/10.1504/ijaitg.2019.10024157
Palacios-Vargas, J. G., Ortiz-Ceballos, A. I. y Salvador-Escobedo, I. (2016). Diversidad y abundancia de colémbolos en dos tipos de lombricomposta producida en el centro de Veracruz, México. Entomología Mexicana, 3, 456−461. https://doi.org/10.13140/RG.2.1.4258.9685
Resolución Conjunta entre la Secretaría de Control y Monitoreo Ambiental y el Servicio Nacional de Sanidad y Calidad Agroalimentaria (RES -SECCYMA-SENASA) N°01/2019. https://www.argentina.gob.ar/normativa/nacional/resoluci%C3%B3n-1-2019-318692/texto
Robles, F., Salvador, I., Juárez, C., Montiel, D. Mejía-Recamier, B. E. y Palacios-Vargas, J. G. (2012). Colémbolos (Hexapoda) asociados a lombricomposta de cultivo de alfalfa (Medicago sativa) en la Magdalena Contreras, D.F. En: Equihua-Martínez, A., Estrada-Venegas, E. G., Acuña-Soto, J. A., Chaires-Grijalva, M. P. y Durán Ramírez, G. (Eds.), Entomología mexicana (pp. 487-491). Sociedad Mexicana de Entomología - Colegio de Postgraduados.
Siepel, H. y Maaskamp, F. (1994). Mites of different feeding guilds affect decomposition of organic matter. Soil Biology and Biochemistry, 26(10), 1389–1394. https://doi.org/10.1016/0038-0717(94)90222-4
Scopetani, C., Chelazzi, D., Mikola, J., Leiniö, V., Heikkinen, R., Cincinelli, A. y Pellinen, J. (2020). Olive oil-based method for the extraction, quantification and identification of microplastics in soil and compost samples. Science of the Total Environment, 733, 139338. https://doi.org/10.1016/j.scitotenv.2020.139338
Stapleton, M. J. y Hai, F. I. (2023) Microplastics as an emerging contaminant of concern to our environment: a brief overview of the sources and implications. Bioengineered, 14, 2244754. https://doi.org/10.1080/21655979.2023.2244754
Steel, H. y Bert, W. (2012). Biodiversity of Compost Mesofauna and its Potential as an Indicator of the Composting Process Status. Dynamic Soil, Dynamic Plant ©2011 Global Science Books.
Steel, H., de la Peña, E., Fonderie, P., Willekens, K., Borgonie, G. y Bert, W. (2010). Nematode succession during composting and the potential of the nematode community as an indicator of compost maturity. Pedobiologia, 53, 181–190. https://doi.org/10.1016/j.pedobi.2009.09.003
Steiner, T., Zhang, Y., Möller, J.N., Agarwal, S., Löder, M. G. J., Greiner, A., Laforsch, C. y Freitag, R. (2022). Municipal biowaste treatment plants contribute to the contamination of the environment with residues of biodegradable plastics with putative higher persistence potential. Scientific Reports, 12, 9021. https://doi.org/10.1038/s41598-022-12912-z
Tripetchkul, S., Pundee, K., Koonsrisuk, S. y Akeprathumchai, S. (2012). Co-composting of coir pith and cow manure: initial C/N ratio vs physico-chemical changes. International Journal of Recycling of Organic Waste in Agriculture,1(1), 15.
Tong, H., Jiang, Q., Zhong, X. y Hu, X. (2021). Rhodamine B dye staining for visualizing microplastics in laboratory-based studies. Environmental Science and Pollution Research, 28, 4209–4215. https://doi.org/10.1007/s11356-020-10801-4
Vittum, P. J. (2009). Chapter 238 - Soil Habitats. En: Resh, V. H. y Cardé, R. T. (Eds.). Encyclopedia of Insects (2nd ed.). Elsevier. https://doi.org/10.1016/B978-0-12-374144-8.00247-2
Webster, J. R. y Benfield, E. F. (1986). Vascular plant breakdown in freshwater ecosystems. Annual Review of Ecology, Evolution, and Systematics, 17, 567–594. https://doi.org/10.1146/annurev.es.17.110186.003031
Weithmann, N., Möller, J. N., Löder, M. G. J., Piehl, S., Laforsch, C. y Freitag, R. (2018). Organic fertilizer as a vehicle for the entry of microplastic into the environment. Science Advances, 4, eaap8060. https://doi.org/10.1126/sciadv.aap8060
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Nicolás Ferreiro, Delfina Villarreal

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.