MIP OES, AN EMERGENT ATOMIC SPECTROMETRY FOR MULTIELEMENTAL DETERMINATION IN SOIL

Authors

  • Micaela Pérez Universidad Nacional de La Pampa, Facultad de Agronomía Santa Rosa, provincia de La Pampa, Argentina
  • Daiana Brunello Universidad Nacional de La Pampa, Facultad de Ciencias Exactas y Naturales, Santa Rosa, provincia de La Pampa, Argentina
  • Florencia Cora Jofre Universidad Nacional de La Pampa, Facultad de Ciencias Exactas y Naturales, Santa Rosa, provincia de La Pampa, Argentina. Instituto de Ciencias de la Tierra y Ambientales de La Pampa (INCITAP, CONICET-UNLPam), Santa Rosa, provincia de La Pampa, Argentina
  • Marianela Savio Universidad Nacional de La Pampa, Facultad de Ciencias Exactas y Naturales, Santa Rosa, provincia de La Pampa, Argentina. Instituto de Ciencias de la Tierra y Ambientales de La Pampa (INCITAP, CONICET-UNLPam), Santa Rosa, provincia de La Pampa, Argentina
  • Nanci Kloster

Keywords:

atomic emission, atomic absorption, exchangeable base cations, micronutrients

Abstract

Elemental analysis using atomic spectrometry is one of the most widely used tools for assessing soil nutrients availability. The objective of this study is to assess Microwave-Induced Plasma Optical Emission Spectrometry (MIP OES), an emerging multielement measurement method, for the analysis of calcium, magnesium, potassium, sodium, copper, zinc, iron, and manganese in soils. Calcium, magnesium, potassium, and sodium contents were quantified in nine samples and copper, zinc, iron, and manganese contents were determined in 16 samples using MIP OES and Flame Atomic Absorption or Emission (FAAS/FAES). The results indicate that the analytical sensitivity of MIP OES is lower than that of FAAS/FAES, up to one order of magnitude, with higher limits of detection and limits of quantification, although in the same order of magnitude. MIP OES demonstrated operational advantages over FAAS/FAES, such as simultaneous analyses of elements, a wider linear range, and lower cost due to the use of nitrogen generated from air, which positions it favorably as compared to other atomic spectrometry methods for soil analysis.

References

Abellán-Martin, S. J., Aguirre, M. A. y Canals, A. (2023). Applicability of microwave induced plasma optical emission spectrometry for wear metal determination in lubricant oil using a multinebulizer. J. Anal. At. Spectrom., 38, 1379-1386. https://doi.org/10.1016/j.geoderma.2022.116048

Balaram, V. (2020). Microwave plasma atomic emission spectrometry (MP-AES) and its applications – A critical review. Microchemical Journal, 159. https://doi.org/10.1016/j.microc.2020.105483

Baranyai, E., Toth, C. N. y Fabian, I. (2020). Elemental Analysis of Human Blood Serum by Microwave Plasma—Investigation of the Matrix Effects Caused by Sodium Using Model Solutions. Biological Trace Element Research, 194, 13-23. https://doi.org/10.1007/s12011-019-01743-1

Barbieri, P., Sainz Rosas, H. R., Wyngaard, N., Eyherabide, M., Reussi Calvo, N. I., Salvagiotti, F., Correndo, A. A., Barbagelata, P., Espósito Goya, G. P., Colazo, J. C. y Echeverría, H. E. (2017). Can Edaphic Variables Improve DTPA-based Zinc diagnosis in Corn?. Soil Fertility and Plant Nutrition, 81(3), 556-563. https://doi.org/10.2136/sssaj2016.09.0316

Bouyoucos, G. J. (1962). Hydrometer method for making particle size analysis soils. Agronomy Journal, 464-465.

Cora Jofré, F., Pérez, M., Kloster, N. y Savio, M. (2020). Analytical methods assessment for exchangeable cations analysis in soil: MIP OES appraisement. Communications in Soil Science and Plant Analysis, 51(16), 2205-2214. https://doi.org/10.1080/00103624.2020.1822377

Core Jofré, F., Larregui, D. N., Murcia, V. N., Pacheco, P. y Savio, M. (2021). Infrared assisted digestion used as a simple green sample preparation method for nutrient analysis of animal feed by microwave induced plasma atomic emission spectrometry. Talanta, 231. https://doi.org/10.1016/j.talanta.2021.122376

Danzer, K. y Currie, L. A. (1998). Guidelines for calibration in analytical chemistry. Part I. Fundamentals and single component calibration. Pure Applied Chem., 70, 993-1014.

Di Rienzo, J.A., Casanoves, F., Balzarini, M.G., Gonzalez, L., Tablada, M. y Robledo, C.W. (2020). InfoStat versión 2020. Centro de Transferencia InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. URL http://www.infostat.com.ar

Fernandez, R. (2018). Valores de línea de base para evaluar la degradación en Molisoles. Tesis de Doctorado. Universidad Nacional del Sur. Bahía Blanca. http://repositoriodigital.uns.edu.ar/handle/123456789/4353

Fontoura, B. M., Cora Jofré, F., Williams, T., Savio, M., Donati, G. L. y Nóbrega, J. A. (2022). Is MIP-OES a suitable alternative to ICP-OES for trace element analysis?. Journal of Analytical Atomic Spectrometry, 37, 966-984. https://doi.org/10.1039/D1JA00375E

Krogstad, T. y Zivanovic, V. (2022). The Microwave Induced Plasma with Atomic Emission Spectrometry (MP–AES) as a Tool for Determination of Plant Available Nutrients in Ammonium lactate Extraction Solution. Communications in Soil Science and Plant Analysis, 53(9), 1147-1157. https://doi.org/10.1080/00103624.2022.2043345

Lindsay, W. L. y Norwell, W. A. (1978). Development of a DTPA test for zinc, iron, manganese, and copper. Soil Sci. Soc. Am. J., 42, 421-428.

Moreno-Jimenez, E., Plaza, C., Saiz, H., Manzano, R., Flagmeier, M. y Maestre, F T. (2019). Aridity and reduced soil micronutrient availability in global drylands. Nature sustainability, 2, 371-377. https://doi.org/10.1038/s41893-019-0262-x

Niedzielski, P., Kozaka, L., Wachelkaa, M., Jakubowski, K. y Wybieralska, J. (2015). The microwave induced plasma with optical emission spectrometry (MIP–OES) in 23 elements determination in geological samples. Talanta, 132, 591-599. https://doi.org/10.1016/j.talanta.2014.10.009

Olivieri, A. C. (2014). Analytical Figures of Merit: From Univariate to Multiway Calibration. Chemical Reviews, 114, 5358-5378. https://doi.org/10.1021/cr400455s

Ozbek, N. y Akman, S. (2016). Microwave plasma atomic emission spectrometric determination of Ca, K and Mg in various cheese varieties. Food Chem., 192, 295-298. https://doi.org/10.1016/j.foodchem.2015.07.011

Serrano, R., Anticó, E., Grindlay, G., Gras, L. y Fontas, C. (2022). Determination of elemental bioavailability in soils and sediments by microwave induced plasma optical emission spectrometry (MIP OES): matrix effects and calibraton strategies. Talanta, 240, 1231-66. https://doi.org/10.1016/j.talanta.2021.123166

Sparks, D. L., Page, A. L., Helmke, P. A. y Loeppert, R. H. (1996). Methods of soil analysis Part 3 - Chemical methods. Madison WI: Soil Science Society of America, American Society of Agronomy.

Welz, B. y Sperling, M. (2007). Atomic absorption spectrometry, pp 965. Weinheim: Wiley-VCH Verlag GmbH.

Published

30-12-2024

How to Cite

Pérez, M., Brunello, D., Cora Jofre, F., Savio, M., & Kloster, N. (2024). MIP OES, AN EMERGENT ATOMIC SPECTROMETRY FOR MULTIELEMENTAL DETERMINATION IN SOIL. Ciencia Del Suelo, 42(2). Retrieved from https://ojs.suelos.org.ar/index.php/cds/article/view/837

Issue

Section

Scientific Note