A SIMPLE AND FAST METHOD TO DETERMINE AGGREGATE STABILITY IN SANDY LOAM ENTISOLS
Keywords:
mean weight diameter, change of mean weight diameter, normalized stability index, mass of large macroaggregatesAbstract
Aggregate stability (EA) is the best soil physical health indicator. However, its determination is complex and time-consuming, which discourages its frequent use. Other proposed indicators are either the mean weighted diameter change between capillary wetting (MC) and aggressive wetting (MV) (DDMPMC-MV), which requires six water sieving, or the normalized stability index (IEN), which also requires a correction by sand size. This study aimed to evaluate simpler and quicker soil parameters as EA indicators. Soil samples were taken at 0-20 cm from Entisols with sandy loam surface texture of San Luis Province (Argentina) under four soil uses. The IEN, the DDMPMC-MV, aggregate mean weight diameter after MV (DMPMV, three sievings), the change of macroaggregate (2000-8000 µm, MA) mass between MC and MV (DmasaMAMC-MV, two sievings), and the MA mass after MV (masaMAMV, one sieving) were determined. The IEN was not able to differentiate the four soil uses assessed. The DDMPMC-MV was closely related to DmasaMAMC-MV (R2=0,99), allowing to reduce the number of water sievings from six to two. However, neither DDMPMC-MV nor DmasaMAMC-MV significantly reflected the effect of soil use, since they presented a high variability and negative values that hinder their interpretation. The DMPMV is a good indicator of EA and its use would allow to reduce the number of water sievings to three. However, DMPMV was very closely related to masaMAMV (R2=0,99). Thus, EA could be determined through the stability of MA measured through masaMAMV, which requires only one water sieving. This would encourage soil physical health monitoring. Nevertheless, it is necessary to continue the research considering a greater range of edaphoclimatic conditions.
References
Aparicio, V. C. y Costa, J. L. (2007). Soil quality indicators under continuous cropping systems in the Argentinean Pampas. Soil and Tillage Research, 96(1-2), 155-165. https://doi.org/10.1016/j.still.2007.05.006.
Castiglioni, M. G. y Behrends Kraemer, F. B. (2019). Short-term effect of cover crops on aggregate stability assessed by two techniques. Ciencia del Suelo, 37(2), 298-314.
Chenu, C. y Cosentino, D. (2007). Microbial regulation of soil structural dynamics. En K. Ritz y I. Young (Eds.), The architecture and biology of soils: life in inner space (pp. 37-70). CABI.
Chenu, C.; Le Bissonais, Y. y Arrouays, D. (2000). Organic matter influence on clay wettability and soil aggregate stability. Soil Science Society of America Journal, 64,1479-1486. https://doi.org/10.2136/sssaj2000.6441479x.
Colazo, J. C. y Buschiazzo, D. E. (2010). Soil dry aggregate stability and wind erodible fraction in a semiarid environment of Argentina. Geoderma, 159(1-2), 228-236. https://doi.org/10.1016/j.geoderma.2010.07.016
De Leenher, L. y De Boodt, M. (1958). Determination of aggregate stability by change in mean weight diameter. Proceedings of the International Symposium on Soil Structure (pp. 290-300). Van de Landbowhoge School.
Domínguez, G. F., García, G. V., Studdert, G. A., Agostini, M. A., Tourn, S. N., y Domingo, M. N. (2016). Is anaerobic mineralizable nitrogen suitable as soil health indicator? Spanish Journal of Soil Science, 6,82-97. https://doi.og/10.3232/SJSS.2016.V6.N2.01.
Fernández, R., Quiroga, A. y Noellemeyer, E. (2017). Comparación de métodos de determinación de textura en Ustoles de la Región Semiárida Pampeana. En N. Kloster (Ed.), Métodos de análisis e implementación de Calidad en el Laboratorio de Suelos (pp. 75-82). INTA Ediciones.
Gabioud, E. A., Wilson, M. G., y Sasal, M. C. (2011). Análisis de la estabilidad de agregados por el método de Le Bissonnais en tres órdenes de suelos. Ciencia del Suelo, 29,129-139.
García, G. V., Tourn, S. N., Roldán, M. F., Mandiola, M. y Studdert, G. A. (2020a). Simplifying the determination of aggregate stability indicators of Mollisols. Communication in Soil Science and Plant Analyses, 51(4), 481-490. https://doi.org/10.1080/00103624.2020.1717513.
García, G. V., Wyngaard, N., Reussi Calvo, N. I., San Martino, S., Covacevich, F. y Studdert, G. A. (2020b). Soil survey reveals a positive relationship between aggregate stability and anaerobic mineralizable nitrogen. Ecological Indicators, 117, 106640. https://doi.org/10.1016/j.ecolind.2020.106640.
Gee, G. W. y Bauder, J. W. (1986). Particle size analysis. En G. R. Blake y K. H. Hartge (Eds.), Methods of soil analysis, part 1. Physical and mineralogical methods – agronomy monograph 9. (2a ed., Agronomy Monograph 9) (pp. 383–411). Am. Soc. Agron. Inc. – Soil Sci. Soc. Am. Inc.
Haynes, R. J. y Francis, G. S. (1993). Changes in microbial biomass C, soil carbohydrate composition and aggregate stability induced by growth of selected crop and forage species under field conditions. Journal of Soil Science, 44,665-675. https://doi.org/10.1111/j.1365-2389.1993.tb02331.x.
INTA. (s.f.). Instituto Nacional de Tecnología Agropecuaria. Recuperado el 06 de diciembre, 2023, de https://geo.inta.gob.ar/#10.09/-33.5774/-65.4545.
King, A. E., Congreves, K. A., Deen, B., Dunfield, K. E., Voroney, R. P. y Wagner-Riddle, C. (2019). Quantifying the relationships between soil fraction mass, fraction carbon, and total soil carbon to assess mechanisms of physical protection. Soil Biology and Biochemistry, 135, 95-107. https://doi.org/10.1016/j.soilbio.2019.04.019.
Kraus, T. A., Bianco, C. A., y Núñez, C. O. (1999). Los ambientes naturales del sur de la Provincia de Córdoba. Fundación de la Universidad Nacional de Río Cuarto.
Le Bissonnais, Y. (1996). Aggregate stability and assessment of soil crustability and erodibility: I. Theory and methodology. European Journal of Soil Science, 47,425-437. https://doi.org/10.1111/j.1365-2389.1996.tb01843.x .
Nelson, D. W. y Sommers, L. E. (1982). Total carbon, organic carbon, and organic matter. En A. L. Page (Ed.), Methods of soil analysis. Part 2. Chemical and microbiological properties. (2nd ed., Agronomy Monograph 9). (pp. 539-579). Am. Soc. Agron. Inc. – Soil Sci. Soc. Am. Inc.
Ontivero, R. E., Risio Allione, L., Castellarini, F. y Lugo, M. A. (2023). Composición de las comunidades de hongos micorrícicos arbusculares en diferentes usos de suelo en el Cardenal, Argentina. Ecología Austral, 33(1), 095-107. https://doi.org/10.25260/EA.23.33.1.0.1955
R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Retrieved from https://www.R- project.org/.
Rabot, E., Wiesmeier, M., Schlüter, S. y Vogel, H. J. (2018). Soil structure as an indicator of soil functions: a review. Geoderma, 314,122-137. https://doi.org/10.1016/j.geoderma.2017.11.009.
Rienzi, E. A., Marchi, A. y Rodriguez, G. (2018). Aggregate size, particulate and total organic carbon in different land uses on a sandy loam soil exposed to wind erosion. Advances in Agricultural Science, 6(3),95-111.
Robinson, G. W. (1922). A new method for the mechanical analysis of soils and other dispersions. The Journal of Agricultural Science, 12(3), 306-321.
Roldán, M. F., Studdert, G. A., Videla, C. C., San Martino, S. y Picone, L. (2014). Distribución de tamaño y estabilidad de agregados en molisoles bajo labranzas contrastantes. Ciencia del Suelo, 32(2), 247-257. http://www.suelos.org.ar/publicaciones/vol_32n2/pag.%20247-257.pdf
https://doi.org/10.2136/sssaj1998.03615995006200050032x.
Saygin, S. L., Cornelis, W. M., Erpul, G. y Gabriels, D. (2012). Comparison of different aggregate stability approaches for loamy sand soils. Applied Soil Ecology, 54,1-6. https://doi.org/10.1016/j.apsoil.2011.11.012.
Six, J., Elliott, E. T. y Paustian, K. (2000). Soil structure and soil organic matter: II. A normalized stability index and the effect of mineralogy. Soil Science Society of America Journal, 64(3),1042-49. https://doi.org/10.2136/sssaj2000.6431042x.
Six, J., Elliott, E. T., Paustian, K. y Doran, J. W. (1998). Aggregation and soil organic matter accumulation in cultivated and native grassland soils. Soil Science Society of America Journal, 62(5), 1367-1377.
Six, J., Bossuyt, H., Degryze, S. y Denef, K. (2004). A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil and Tillage Research, 79,7-31. https://doi.org/10.1016/j.still.2004.03.008.
Tourn, S. N., Studdert, G. A. y Videla, C. C. (2019). Ecological agriculture intensification through crop-pasture rotations does improve aggregation of Southeastern-Pampas Mollisols. Soil and Tillage Research, 195,104411. https://doi.org/10.1016/j.still.2019.104411
Tourn, S. N., Agostini, M. A., Domínguez, G. F. y Studdert, G. A. (2020). Evaluación de métodos de determinación de la estabilidad estructural en un molisol del sudeste bonaerense. Ciencia del Suelo, 38 (2),355-365.
Walkley, A. y Black, I. A. (1934). An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37(1), 29-38.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Gisela Vanesa García, R.E. Ontivero, M.A. Lugo, G.A. Studdert
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.