LAMELLAE IN HAPLUSTOLLS FROM CENTRAL WEST CÓRDOBA (ARGENTINA): MORPHOLOGY AND EFFECT IN PERMEABILITY

Authors

  • Américo José Degioanni UNIVERSIDAD NACIONAL DE RIO CUARTO
  • Silvana Amín
  • Miguel Alejandro Becerra
  • Yanina Chilano
  • Rosana Marzari
  • Baltazar Parra
  • Marcos Darío Bongiovanni

Keywords:

eluviation - illuviation, hydraulic conductivity, sandy loam, loam

Abstract

‘Lamellae’ refers to a morphological feature of soils that is observed visually in the profile as horizontal layers or bands in varying quantities, thicknesses and depths. They are found in soils in the central-west region of the province of Córdoba (Argentina). The objectives of this study are: 1) to record the presence of lamellae in an area of the province of Córdoba, 2) to characterize morphological aspects, and 3) to evaluate the effect of their presence on permeability. The existence of lamellae was confirmed in 195 profiles in the districts of Achiras, Río Cuarto, and Tegua (Córdoba, Argentina). In 54 profiles of Haplustolls, the quantity, thickness, shape, and depth of lamellae were recorded. Samples were taken from the pure lamella profile and positions above and below it. Particle size distribution, organic matter, and saturated hydraulic conductivity were measured. The quantity of lamellae per profile ranges from one to four, with an average thickness of 0.71 cm, mostly flat and continuous in shape, and at depths between 18 and 48 cm. In Haplustolls with loamy and sandy loam textures, an average of 13% increase in clay content of the lamella was observed, particularly in the fine colloid fraction (<0.001 mm). In contrast, organic matter content increased by an average of 20% in loamy soils. It was also observed that the presence of lamellae in sandy loam Haplustolls significantly alters soil permeability, reducing saturated hydraulic conductivity in the horizon portion containing the lamella by 30 to 70%. This study confirms the presence of lamellae in Haplustolls in the central-west region of Córdoba and their effect on decreasing permeability in sandy loam soils.

References

Baillie, I. C. (2001). Soil survey staff 1999, Soil taxonomy: a basic system of soil classification for making and interpreting soil surveys, agricultural handbook 436, Natural Resources Conservation Service, USDA, Washington DC, USA, pp. 869.

Bockheim, J. G. (2014). Soil geography of the USA. Springer, Dordrecht. 320 p.

Bockheim, J. G. y Hartemink, A. E. (2013). Classification and distribution of soils with lamellae in the USA. Geoderma, 206, 92-100. https://doi.org/10.1016/j.geoderma.2013.04.014

Bouabid, R., Nater, E. A. y Barak, P. (1992). Measurement of pore size distribution in a lamellar Bt horizon using epifluorescence microscopy and image analysis. Geoderma, 53(3-4), 309-328. https://doi.org/10.1016/0016-7061(92)90061-B

Cantero, A., Gil, G., Becerra, V. H., Cisneros, J. M., y Bricchi, E. M. (1999). Un índice de aptitud relativa de las tierras con fines catastrales. Aplicación al Departamento Río Cuarto (Córdoba, Argentina). Investigación agraria. Producción y protección vegetales, 14(1), 259-272.

Casacchia, M., Bonansea, F. y Degioanni, A. (2020). Equipo multimuestra para medir conductividad hidráulica saturada. En Actas XXVII Congreso Argentino de la Ciencia del Suelo (pp. 1-6). ISBN 978-987-46870-3-6.

Coen, G. M., Pawluk, S. y Odynsky, W. (1966). The origin of bands in sandy soils of the stony plain area. Canadian Journal of Soil Science, 46(3), 245-254. https://doi.org/10.4141/cjss66-039

Di Rienzo, J. A., Casanoves, F., Balzarini, M. G., González, L., Tablada, M. y Robledo, C. W. (2020). InfoStat Ver. 2020. Centro de Transferencia InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. URL http://www.infostat.com

Etchevehere, P. H. (1976). Normas de reconocimiento de suelos. Segunda edición actualizada. INTA, Dpto. de Suelos. Public, 152.

Firmino, F. H. T., de Lima Camêlo, D., do Nascimento, A. F., de Souza Lima, J. R., Junior, V. S., de Almeida, B. G. y Corrêa, M. M. (2022). Genesis of lamellae in sandy soils: A case study in a semi-arid region in NE-Brazil. Geoderma, 406, 115447. https://doi.org/10.1016/j.geoderma.2021.115447

Falconer, D. M., Craw, D., Youngson, J. H. y Faure, K. (2006). Gold and sulphide minerals in Tertiary quartz pebble conglomerate gold placers, Southland, New Zealand. Ore Geology Reviews, 28(4), 525-545. https://doi.org/10.1016/j.oregeorev.2005.03.009

Gee, G. W. y Bauder, J. W. (1986). Particle‐size analysis. Methods of soil analysis: Part 1 Physical and mineralogical methods, 5, 383-411.

Gile, L. H. y Grossman, R. B. (1979). The desert project soil monograph. US Government Printing Office.

Gray, F., Meksopon, B. y Peschel, D. (1976). Study of some physical and chemical properties of an Oklahoma soil profile with clay-iron bands. Soil Science, 122(3), 133-138.

Guichón, B. A. y Pernasetti, O. (2018). Dos casos de suelos con horizontes compactados en la provincia de Catamarca. Capítulo 4. En Compactaciones Naturales y Antrópicas en Suelos Argentinos. Editoras: Perla Imbellone y Carina Álvarez. AACS.

Gus-Stolarczyk, M., Drewnik, M., Michno, A. y Szymański, W. (2023). The origin and transformation of soil lamellae in calcareous and non-calcareous loess soils in the Central European loess belt–A case study from southern Poland. Catena, 232, 107399. https://doi.org/10.1016/j.catena.2023.107399

Hanson, P. R., Arbogast, A. F., Johnson, W. C., Joeckel, R. M. y Young, A. R. (2010). Megadroughts and late Holocene dune activation at the eastern margin of the Great Plains, north-central Kansas, USA. Aeolian Research, 1(3-4), 101-110. https://doi.org/10.1016/j.aeolia.2009.10.002

Holliday, V. T. y Rawling III, J. E. (2006). Soil-geomorphic relations of lamellae in eolian sand on the High Plains of Texas and New Mexico. Geoderma, 131(1-2), 154-180. https://doi.org/10.1016/j.geoderma.2005.03.019

Jarsún, B., Gorgas, J. A., Zamora, E. M., Bosnero, H. A., Lovera, E. F., Ravelo, A. C., y Ledesma, M. (2006). Los Suelos: nivel de reconocimiento, escala 1: 500.000: recursos naturales de la Provincia de Córdoba. Agencia de Córdoba D.A.C. y T.S.E.M. Dirección de Ambiente, INTA Manfredi, Córdoba. ISBN 987-20198-3-5

Kilibarda, Z., Argyilan, E. y Blockland, J. (2008). Wind deposition of mud aggregates and their role in development of lamellae in the Fair Oaks Dunes, Indiana. Catena, 72(2), 235-247. https://doi.org/10.1016/j.catena.2007.05.006

Klute, A. y Dirksen, C. (1986). Hydraulic conductivity and diffusivity: Laboratory methods. Methods of soil analysis: Part 1 physical and mineralogical methods, 5, 687-734. https://doi.org/10.2136/sssabookser5.1.2ed.c28

López, J., Degioanni, A. y Becerra, M.A. (2018). Permeabilidad en horizontes con lamelas. En Actas. XXVI Congreso Argentino de las Ciencias del Suelo. Tucumán. Libro digital, PDF. ISBN 978-987-46870-0-5

MAyG - INTA - MAAySP. (2019). Cartas de Suelos de la República Argentina HOJA 3363-19 Río Cuarto. Plan Mapa de Suelos de la Provincia de Córdoba. (https://suelos.cba.gov.ar/RIOCUARTO/index.html)

Nelson, D. A. y Sommers, L. (1983). Total carbon, organic carbon, and organic matter. Methods of soil analysis: Part 2 chemical and microbiological properties, 9, 539-579. https://doi.org/10.2134/agronmonogr9.2.2ed.c29

Natural Resources Conservation Service y US Agriculture Department (Eds.). (2010). Keys to soil taxonomy. Government Printing Office.

Obear, G. R., Pedersen, M. y Kreuser, W. C. (2017). Genesis of clay lamellae in golf course soils of Mississippi, USA. Catena, 150, 62-70. https://doi.org/10.1016/j.catena.2016.10.019

Rawling , J. E. (2000). A review of lamellae. Geomorphology, 35(1-2), 1-9. https://doi.org/10.1016/S0169-555X(00)00015-5

Saxton, K. E., Rawls, W., Romberger, J. S. y Papendick, R. I. (1986). Estimating generalized soil‐water characteristics from texture. Soil science society of America Journal, 50(4), 1031-1036. URL http://www.dynsystem.com/netstorm/soilwater.html?74,254

Soil Survey Staff. (2014). Keys to soil taxonomy. United States Department of Agriculture: Washington, DC, USA.

Schaetzl, R. J. (2001). Morphologic evidence of lamellae forming directly from thin, clayey bedding planes in a dune. Geoderma, 99(1-2), 51-63. https://doi.org/10.1016/S0016-7061(00)00063-X

Tomer, M. D., Boll, J., Kung, K. J., Steenhius, T. y Anderson, J. L. (1996). Detecting illuvial lamellae in fine sand using ground-penetrating radar1. Soil science, 161(2), 121-129.

Torrent, J., Nettleton, W. D., y Borst, G. (1980). Clay illuviation and lamella formation in a Psammentic Haploxeralf in southern California. Soil Science Society of America Journal, 44(2), 363-369.

Van Reeuwijk, L. P. y de Villiers, J. M. (1985). The origin of textural lamellae in Quaternary coast sands of Natal. South African Journal of Plant and Soil, 2(1), 38-43. https://doi.org/10.1080/02571862.1985.10634137

Published

11-07-2024

How to Cite

Degioanni, A. J., Amín, S., Becerra, M. A., Chilano, Y., Marzari, R., Parra, B., & Bongiovanni, M. D. (2024). LAMELLAE IN HAPLUSTOLLS FROM CENTRAL WEST CÓRDOBA (ARGENTINA): MORPHOLOGY AND EFFECT IN PERMEABILITY. Ciencia Del Suelo, 42(1), 80–90. Retrieved from https://ojs.suelos.org.ar/index.php/cds/article/view/822

Issue

Section

Génesis, Clasificación, Cartografía y Mineralogía de Suelos