USE OF VISIBLE AND NEAR INFRARED REFLECTANCE SPECTROSCOPY TO ESTIMATE SOIL PROPERTIES IN ARGENTINA

Authors

  • Daniela Ortiz
  • Juan Martín de Dios Herrero INTA, Estación Experimental Agropecuaria "Ing. Ag. Guillermo Covas", Anguil. Universidad Nacional de La Pampa.
  • Nanci Kloster INTA, Estación Experimental Agropecuaria "Ing. Ag. Guillermo Covas", Anguil. Universidad Nacional de La Pampa.

Keywords:

Local calibration models, Preprocessing techniques, Nitrogen, Clay silt, Carbon, Soil pH

Abstract

The aim of this study was to develop visible and near-infrared spectroscopy (Vis-NIRS) calibration models for predicting the content of organic carbon (OC), total nitrogen (N), clay + silt, and pH values in soils from Argentina, employing different mathematical preprocessing techniques for spectral data. A total of 154 soil samples with contrasting physicochemical characteristics was selected, dried, and sieved to 2 mm prior to the analysis of OC, N, pH, and clay + silt using reference methods. Subsequently, the Vis-NIR spectrum (400 to 2500 nm) of each sample was obtained in reflectance mode. The sample set was randomly divided into two groups: one for calibration model development (80%) and the other for model validation (20%). Eight preprocessing techniques for spectral information were employed, and the best one for each parameter studied was selected based on the criteria of achieving the minimum standard error of cross-validation (EECV), maximum coefficient of determination of cross-validation (R2cv), and maximum residual predictive deviation (RPD). Calibration models were obtained using modified partial least squares regression (MPLS) and five-fold cross-validation. The best models for predicting OC and N were obtained with the raw spectra (RPD=4.69 and 3.65 respectively); for pH, the best model was obtained using the standard normal variate preprocessing technique with the second derivative (RPD=2.27), and for clay + silt, the best model was obtained with multiple scattering correction and second derivative (RPD=2.83). The performance of the models applied to the calibration and testing groups was similar. The results indicate that the appropriate choice of spectral data preprocessing technique can optimize calibration for the prediction. Vis-NIRS is a valuable tool for soil monitoring in Argentina, complementing traditional analysis methods.

References

Amorena, J., Álvarez, D. y Fernández-Ahumada, E. (2021). Development of Calibration Models to Predict Mean Fibre Diameter in Llama (Lama glama) Fleeces with Near Infrared Spectroscopy. Anymals, 11(7), 1998.

Askari, M.S., O'Rourke, S.M. y Holden, N.M. (2015). Evaluation of soil quality for agricultural production using visible–near-infrared spectroscopy. Geoderma, 243–244, 80–91. https://doi.org/10.1016/j.geoderma.2014.12.012

Barnes, R. J., Dhanoa, M. S. y Lister, S. J. (1989). Standard Normal Variate Transformation and De-Trending of Near-Infrared Diffuse Reflectance Spectra. Applied Spectroscopy, 43(5), 772–777.

Bouyoucos, G.J. (1962). Hydrometer method for making particle size analysis soils. Agronomy Journal, 54, 464-465.

Bremner, J.M. (1996). Total Nitrogen, in: Sparks, D. L., (ed), Methods of Soil Analysis. Part 3: Chemical Methods. Soil Science Society America, Madison, Wisconsin, pp. 1149-1176.

Carvalho, J.C., Moura-Bueno, J.M., Ramon, R., Almeida, T.F., Naibo, G., Martins, A.P., Santos, L.S., Gianello, C. y Tiecher, T. (2022). Combining different pre-processing and multivariate methods for prediction of soil organic matter by near infrared spectroscopy (NIRS) in Southern Brazil. Geoderma Regional, 29, e00530. https://doi.org/10.1016/j.geodrs.2022.e00530

Chang, C.W., Laird, D.A. y Hurburgh, C.R. (2005). Influence of soil moisture on near-infrared reflectance spectroscopic measurement of soil properties. Soil Science, 170, 244–255.

Ciurczak, E. W., Igne, B., Workman Jr, J. y Burns, D. A. (Eds.). (2021). Handbook of near-infrared analysis. CRC press.

Demattê, J.A.M., Paiva, A.F., Poppiel, R.R., Rosin, N.A., Ruiz, L.F.C., Mello, F.A., Minasny, B., Grunwald, S., Ge, Y., Ben Dor, E., et al. (2022). The Brazilian Soil Spectral Service (BraSpecS): A User-Friendly System for Global Soil Spectra Communication. Remote Sensing, 14, 740. https://doi.org/10.3390/rs14030740

Di Martino, A. M. y García L. (2022). Análisis de materia orgánica en suelos por espectroscopia de infrarrojo cercano. Revista de tecnología Agropecuaria, INTA Ediciones, 10(41), 27-31.

Diovisalvi, N.V., Izquierdo, N., Echeverria, H., Garcia, F. y Reussi Calvo, N. (2021). Methods to determine nitrogen in sunflower grains. Ciencia del Suelo, 39(2), 217-232. https://ojs.suelos.org.ar/index.php/cds/article/view/620

Food and Agriculture Organization (FAO). (2022). A primer on soil analysis using visible and near-infrared (Vis-NIR) and mid-infrared (MIR) spectroscopy, Rome. https://doi.org/10.4060/cb9005en

Gaitán, J.J., Wingeyer, A.B., Peri, P., Moavro, E., Peralta, G., Fritz, F., Berhongaray, G., Adema, E., Albarracin, S., Álvarez, C., Álvarez Cortés, D.J., Bacigaluppo, S., Balducci, E., Ballón,

M., Banegas, N., Barbaro, S., Barral, P., Behr, S.J., Beider, A.M., …y Sasal, M.C. (2023). Mapa de almacenamiento de C en los suelos de la República Argentina. Asociación Argentina de Productores en Siembra Directa (Aapresid), Consorcio Regional de Experimentación Agrícola (CREA), Instituto Nacional de Tecnología Agropecuaria (INTA), Secretaría de Agricultura, Ganadería y Pesca de la Nación. Ciudad Autónoma de Buenos Aires. Argentina.

Gee, G. y Bauder, J. (1986). Particle size analysis. In: Methods of soil analysis, part 1, physical and mineralogical methods, in: Klute, A., (Ed.). Soil Science Society of America. Madison, Wisconsin USA, pp. 383-411.

Ge, Y., Morgan, C.L. y Wijewardane, N.K. (2020). Visible and near infrared reflectance spectroscopy analysis of soils. Soil Science Society of America Journal, 84, 1495-1502. https://doi.org/10.1002/saj2.20158

Juan, N.A., Ortiz, D.A., Pordomingo, A.B. y Funaro, D.O. (2016ª). Tecnología NIRS para estimar el valor nutritivo de planta entera de maíz y sorgo para silaje y sus fracciones (tallo, hoja, panoja/espiga). Revista de la Asociación Argentina de Producción Animal, 36(1), 230.

Juan, N.A., Ortiz, D.A. y Ruiz, M.A. (2016b). Análisis de calidad de gramíneas forrajeras perennes de ciclo otoño-inverno-primaveral con tecnología NIRS. Revista de la Asociación Argentina de Producción Animal, 36(1), 229.

Levi, N., Karnielia, A. y Paz-Kaganb, T. (2020). Using reflectance spectroscopy for detecting land-use effects on soil quality in drylands. Soil and Tillage Research, 199, 104571. https://doi.org/10.1016/j.still.2020.104571

Ludwig, B., Murugan, R., Parama, V.R.R. y Vohland, M. (2018). Use of different chemometric approaches for an estimation of soil properties at field scale with near infrared spectroscopy. Journal of Plant Nutrition and Soil Science, 181, 704-713. https://doi.org/10.1002/jpln.201800130

McBride, M.B. (2021). Estimating soil chemical properties by diffuse reflectance spectroscopy: promise versus reality. Eur. J. Soil Sci., 73, e13192. https://doi.org/10.1111/ejss.13192

Milinovic, J., Vale, C. y Azenha, M. (2023). Recent advances in multivariate analysis coupled with chemical analysis for soil surveys: a review. Journal of Soils and Sediments, 23, 1085–1098. https://doi.org/10.1007/s11368-022-03377-8

Milos, B., Bensa, B. y Japundzic-Palenkic, B. (2022). Evaluation of Vis-NIR preprocessing combined with PLS regression for estimation soil organic carbon, cation exchange capacity and clay from eastern Croatia. Geoderma Regional, 30, e00558. https://doi.org/10.1016/j.geodrs.2022.e00558

Moura-Bueno, J.M., Dalmolin, R.S.D., Zborowski Horst-Heinen, T., ten Caten, A., Vasques, G.M., Carnieletto Dotto, A. y Grunwald, S. (2020). When does stratification of a subtropical soil spectral library improve predictions of soil organic carbon content?. Science of the Total Environment, 737, 139895. https://doi.org/10.1016/j.scitotenv.2020.139895

Næs, T., Isaksson, T., Fearn, T., y Davies, T. (2002). A user-friendly guide to multivariate calibration and classification. NIR Publications. Chichester, UK.

Nduwamungu, C., Ziadi, N., Tremblay, G.F. y Parent, L.E. (2009). Near-Infrared Reflectance Spectroscopy Prediction of Soil Properties: Effects of Sample Cups and Preparation. Soil Science Society of America Journal, 73(6), 1896-1903. https://doi.org/10.2136/sssaj2008.0213

Olivieri, A. C. (2018). Introduction to multivariate calibration: A practical approach. Springer. Switzerland.

Ortiz, D.A., Camiletti, F.K., Pordomingo, A.B., Cunzolo, S.A., Pighin, D.G., Pordomingo, A.J. y Juan, N.A. (2020). Tecnología NIRS para la determinación de la composición química de pechuga de pollo. Revista Argentina de Producción Animal, 40(1).

Ozaki, Y., McClure, W. F. y Christy, A. A. (Eds.). (2006). "Near-infrared spectroscopy in food science and technology". John Wiley & Sons.

Prananto, J. A., Minasny, B., & Weaver, T. (2020). Near infrared (NIR) spectroscopy as a rapid and cost-effective method for nutrient analysis of plant leaf tissues. Advances in agronomy, 164, 1-49. https://doi.org/10.1016/bs.agron.2020.06.001

Quiroga, A., Funaro, D., Noellemeyer, E. y Peinemann, N. (2006). Barley yield response to soil organic matter and texture in the Pampas of Argentina. Soil and Tillage Research, 90, 63-8. https://doi.org/10.1016/j.still.2005.08.019.

Rabotnikof, C.L., Planas, G.M., Colomer, J.S. y Stritzler, N.P. (1995). Near infrared reflectance spectroscopy (NIRS) for predicting forage quality of perennial warm-season grasses in La Pampa, Argentina. Annales de Zootechnie, 44(1), 97-100.

Seema, A.K., Ghosh A.K., Das B.S. y Reddy N. (2020). Application of Vis-NIR spectroscopy for estimation of soil organic carbon using different preprocessing techniques and multivariate methods in the middle Indo-Gangetic plains of India. Geoderma Regional, 23, e00349. https://doi.org/10.1016/j.geodrs.2020.e00349

Sepúlveda, M. A., Hidalgo, M., Araya, J., Casanova, M., Muñoz, C., Doetterl, S., Wasner, D., Colpaert, B., Bodé, S., Boeckx, P. y Zagal, E. 2021. Near-infrared spectroscopy: Alternative method for assessment of stable carbon isotopes in various soil profiles in Chile. Geoderma Regional, 25, e00397. https://doi.org/10.1016/j.geodrs.2021.e00397.

Shenk, J.S., Workman, J.J., Westerhaus, M.O., Burns, D.A. y Ciurczak, E.W. (2001). Application of NIR Spectroscopy to Agricultural Products. En Handbook of near-infrared analysis. M. Dekker.

Sørensen, K.M., van den Berg, F. y Engelsen, S.B. (2021). NIR Data Exploration and Regression by Chemometrics—A Primer. In: Ozaki, Y., Huck, C., Tsuchikawa, S., Engelsen, S.B. (eds). Near-Infrared Spectroscopy. Springer, Singapore. https://doi.org/10.1007/978-981-15-8648-4_7

St. Luce, M., Ziadi, N. y Viscarra Rossel, R.A. (2022). GLOBAL-LOCAL: A new approach for local predictions of soil organic carbon content using large soil spectral libraries. Geoderma, 425, 116048.https://doi.org/10.1016/j.geoderma.2022.116048

Terhoeven-Urselmans, T., Michel K., Helfrich M., Flessa H. y Ludwig, B. (2006). Near-infrared spectroscopy can predict the composition of organic matter in soil and litter. Journal of Plant Nutrition and Soil Science, 169, 168-174. https://doi.org/10.1002/jpln.200521712

Viscarra Rossel, R.A., BehrensT., Ben-Dor, E., Brownd, D.J., Demattê, J.A.M., Shepherd, K.D., Shi, Z., Stenberg, B., Stevens, A., Adamchuk, V., Aïchi, H., Barthès, B.G., Bartholomeus, H.M., Bayer, A.D.,Bernoux, M., Böttcher, K., Brodský L., Du, C.W., Chappell, A., … y Ji, W. (2016). A global spectral library to characterize the world's soil. Earth-Science Reviews, 155, 98-230.http://dx.doi.org/10.1016/j.earscirev.2016.01.012

Viscarra Rossel, R., Behrens, T., Ben-Dor, E., Chabrillat, S., Melo Demattê, J. A., Ge, Y., Gomez, C., Guerrero, C., Peng, Y., Ramirez-Lopez, L., Shi, Z., Stenberg, B., Webster, R., Winowiecki, L. y Shen, Z. (2022). Diffuse reflectance spectroscopy for estimating soil properties: A technology for the 21st century. European Journal of Soil Science, 73 (4), e13271. https://doi.org/10.1111/ejss.13271

Wang, L. y Wang, R. (2022). Determination of soil pH from Vis-NIR spectroscopy by extreme learning machine and variable selection: A case study in lime concretion black soil. Spectrochemical Acta Part A: Molecular and Biomolecular Spectroscopy, 283, 121707, https://doi.org/10.1016/j.saa.2022.121707.

Walkley, A. y Black, I.A. (1934). An examination of the Degtjareff method for determining soil organic matter, a proposed modification of the chromic acid titration method. Soil Science, 37, 29-38.

Wetterlind, J., Viscarra Rossel, R. A. y Steffens, M. (2022). Diffuse reflectance spectroscopy characterizes the functional chemistry of soil organic carbon in agricultural soils. European Journal of Soil Science, 73, e13263. https://doi.org/10.1111/ejss.13263

Published

11-07-2024

How to Cite

Ortiz, D., de Dios Herrero, J. M., & Kloster, N. (2024). USE OF VISIBLE AND NEAR INFRARED REFLECTANCE SPECTROSCOPY TO ESTIMATE SOIL PROPERTIES IN ARGENTINA . Ciencia Del Suelo, 42(1), 1–13. Retrieved from https://ojs.suelos.org.ar/index.php/cds/article/view/820

Issue

Section

Física, Química y Físico-química de los Suelos