HYDROLOGICAL BEHAVIOR OF RANGELANDS UNDER DIFFERENT DEGRADATION CONDITIONS IN NORTHWESTERN ARID PATAGONIA

Authors

  • Valeria Aramayo Instituto Nacional de Tecnología Agropecuaria (INTA) https://orcid.org/0000-0003-4827-6914
  • Maria Victoria Cremona Instituto Nacional de Tecnología Agropecuaria (INTA) https://orcid.org/0009-0001-8058-6421
  • Marcelo Daniel Nosetto Grupo de Estudios Ambientales, Instituto de Matemática Aplicada San Luis, Universidad Nacional de San Luis & Comisión Nacional de Investigaciones Científicas y Técnicas.

Keywords:

Runoff, Hillslope, Grazing, Bare soil interpatch

Abstract

In arid Patagonia grazing by livestock is the most widespread form of land use. Although grazing is known to affect soils hydrological characteristics, few studies have addressed runoff flows generation as influenced by cattle grazing in these areas. In this study, we evaluated the relationship between grassland condition and hillside surface characteristics that influence the response to rainfall. We compared landscape characteristics, landscape function indices and soil properties of bare soil (uncovered) interpatches at different slope positions with two degradation conditions and monitored interpatch moisture content during a rainy season. Severe degradation was associated with greater surface runoff, suggesting downslope resource transport. In the most severely degraded soils the upper slope showed a the lowest profile depth, greatest resistance to penetration and slowest infiltration rate, and the lower slope registered the second highest degree of saturation after rainfall events. These differences in hydrological properties would have also modified vegetation behavior as indicated by the NDVI. These results support the premise that the hydrologic response on arid zones slopes depends on the functionality of bare soil interpatches and on the previous moisture content.

References

Aguiar, M. R., Paruelo, J. M., Sala, O. E. y Lauenroth, W. K. (1996). Ecosystem responses to changes in plant functional type composition: an example from the Patagonian steppe. Journal of vegetation science, 7(3), 381-390.

Aramayo, V., Cremona, M. V., Fernández, R. J. y Nosetto, M. D. (2022). Características de las precipitaciones en zonas áridas de la Patagonia Norte, Argentina. Cuadernos del CURIHAM, (28), 43-58. https://doi.org/10.35305/curiham.v28i.180

Barbosa-Briones, E., Cardona-Benavides, A., Reyes-Hernández, H. y Muñoz-Robles, C. (2019). Ecohydrological function of vegetation patches in semi-arid shrublands of central Mexico. Journal of Arid Environments, 168, 36-45. https://doi.org/10.1016/j.jaridenv.2019.05.005

Bonvissuto, G., Siffredi,G., Ayesa, J., Bran, D., Somlo, R. y Becker, G. (1993). Estepa subarbustivo-graminosa de Mulinum spinosum y Poa ligularis, en el área ecológica de Sierras y Mesetas Occidentales en el noroeste de la Patagonia. En: Paruelo, Bertiller, J.M., Schlichter, M.B., T.M. y Coronato, F.R. (eds.). Secuencia de deterioro en distintos ambientes patagónicos: Su caracterización mediante el modelo de estados y transiciones. Lucha contra la Desertificación en la Patagonia a través de un sistema de monitoreo ecológico, pp. 23-30. LUDEPA SME, Bariloche, Argentina.

Bracken, L. J., Wainwright, J., Ali, G. A., Tetzlaff, D., Smith, M. W., Reaney, S. M., Roy, A. G. (2013). Concepts of hydrological connectivity: Research approaches, pathways and future agendas. Earth-Science Reviews, 119, 17-34. https://doi.org/10.1016/j.earscirev.2013.02.001

Bran, D. E., Garcia, C. L. y Corso, M. L. (2017). Proyecto Soporte de Decisiones para la incorporación y ampliación del Manejo Sustentable de Tierras (SD MST): Memoria y Productos de la Comisión Ad hoc para el Mapeo de Sistemas de Uso de Tierras (LUS) y la Degradación de Tierras (DT). EEA Bariloche.

Bran, D., Lopez. C., Ayesa, J, Gaitán, J., Umaña, F., Quiroga, S. (2015). Provincia de Río Negro. In: Casas R, Albarracín G (eds.). El deterioro del suelo y del ambiente en Argentina. Fundación para la Educación, la Ciencia y la Cultura, Buenos Aires, Argentina, pp 213–223.

Cantón, Y., Solé-Benet, A. y Domingo, F. (2004). Temporal and spatial patterns of soil moisture in semiarid badlands of SE Spain. Journal of Hydrology, 285(1-4), 199-214. https://doi.org/10.1016/j.jhydrol.2003.08.018

Chartier, M. P., Rostagno, C. M., y Pazos, G. E. (2011). Effects of soil degradation on infiltration rates in grazed semiarid rangelands of northeastern Patagonia, Argentina. Journal of Arid Environments, 75(7), 656-661. https://doi.org/10.1016/j.jaridenv.2011.02.007

Cibils, A. y Borrelli, P. (2005). Grasslands of Patagonia. Grasslands of the world, Roma, FAO, 121-170.

Coronato, F. R. y Bertiller, M. B. (1997). Climatic controls of soil moisture dynamics in an arid steppe of northern Patagonia, Argentina. Arid Land Research and Management, 11(3), 277-288.

Decagon devices (2018). EC-10, EC-20, EC-5 Soil moisture sensors. User’s manual. Decagon Devices, Inc. Washington, USA. Disponible en: http://manuals.decagon.com/Retired%20and%20Discontinued/Manuals/.

Dijkema, J., Koonce, J. E., Shillito, R. M., Ghezzehei, T. A., Berli, M., Van Der Ploeg, M. J. y Van Genuchten, M. T. (2018). Water distribution in an arid zone soil: Numerical analysis of data from a large weighing lysimeter. Vadose Zone Journal, 17(1), 1-17. https://doi.org/10.2136/vzj2017.01.0035

Dunne, T. (1983). Relation of field studies and modeling in the prediction of storm runoff. Journal of Hydrology, 65(1-3), 25-48.

Funk, F. A., Peter, G., Leder, C. V., Loydi, A., Kröpfl, A. y Distel, R. A. (2018). The impact of livestock grazing on the spatial pattern of vegetation in north-eastern Patagonia, Argentina. Plant Ecology & Diversity, 11(2), 219-227. https://doi.org/10.1080/17550874.2018.1473519

Gaitán, J. J. (2002). Topografía, pastoreo y vegetación como factores de control de la concentración y patrón espacial del carbono edáfico en la estepa patagónica. Tesis de maestría. Universidad Nacional de Buenos Aires.

Gaitán, J. J., Bran, D. E., Oliva, G. E., Aguiar, M. R., Buono, G. G., Ferrante, D., Nakamatsu, V., Ciari G., Salomone, J.,… y Maestre, F. T. (2018). Aridity and overgrazing have convergent effects on ecosystem structure and functioning in Patagonian rangelands. Land Degradation & Development, 29(2), 210-218. https://doi.org/10.1002/ldr.2694

Gaitán, J. J., López, C. R. y Bran, D. E. (2009). Efectos del pastoreo sobre el suelo y la vegetación en la estepa patagónica. Ciencia del suelo, 27(2), 261-270.

Gee, G. W. y Bauder, J. W. (1986). Particle‐size analysis. Methods of soil analysis: Part 1 Physical and mineralogical methods, 5, 383-411.

Hopmans, J. W. (2019). Soil physical properties, processes, and associated root-soil interactions. In Dryland ecohydrology (pp. 49-69). Springer, Cham. https://doi.org/10.1007/978-3-030-23269-6_3

Istok, J. D. y Boersma, L. (1986). Effect of antecedent rainfall on runoff during low-intensity rainfall. Journal of Hydrology, 88(3-4), 329-342.

Kaless, G., Malnero, H., Frumeto, O. y Pascual, M. (2021). When it rains in the desert of Patagonia: heavy rains, sediment laden flash floods and hazard management challenges. Authorea. October 27, 2021. https://doi.org/10.22541/au.163534875.55080666/v1

Klass, J. R. (2012). Plant-soil interactions associated with desertification of the Chihuahuan Desert: Examination of changes in the soil biotic community linked to shrub encroachment. Tesis doctoral. Universidad del Estado de Nuevo Mexico.

López, D. R., Brizuela, M. A., Willems, P., Aguiar, M. R., Siffredi, G. y Bran, D. (2013). Linking ecosystem resistance, resilience, and stability in steppes of North Patagonia. Ecological indicators, 24, 1-11. https://doi.org/10.1016/j.ecolind.2012.05.014

Ludwig, J. A., Wilcox, B. P., Breshears, D. D., Tongway, D. J. e Imeson, A. C. (2005). Vegetation patches and runoff–erosion as interacting ecohydrological processes in semiarid landscapes. Ecology, 86(2), 288-297. https://doi.org/10.1890/03-0569

Magliano, P. N., Breshears, D. D., Fernández, R. J.y Jobbágy, E. G. (2015). Rainfall intensity switches ecohydrological runoff/runon redistribution patterns in dryland vegetation patches. Ecological applications, 25(8), 2094-2100. https://doi.org/10.1890/15-0550.1

Magliano, P. N., Murray, F., Baldi, G., Aurand, S., Páez, R. A., Harder, W. y Jobbágy, E. G. (2015). Rainwater harvesting in Dry Chaco: Regional distribution and local water balance. Journal of Arid Environments, 123, 93-102. https://doi.org/10.1016/j.jaridenv.2015.03.012

Mayor., A. G., Bautista, S., Small, E. E., Dixon, M.y Bellot, J. (2008). Measurement of the connectivity of runoff source areas as determined by vegetation pattern and topography. A tool for assessing potential water and soil losses in drylands. Water Resourses Research, 44, W10423.

Mayor, A. G. y Bautista, S. (2012). Multi-scale evaluation of soil functional indicators for the assessment of water and soil retention in Mediterranean semiarid landscapes. Ecological Indicators, (20), 332-336. https://doi.org/10.1016/j.ecolind.2012.03.003

Mongil Manso, J., Navarro Hevia, J., Díaz Gutiérrez, V. y Cruz Alonso, V. (2015). Nuevo infiltrómetro inundador para test de infiltración económico en terrenos agroforestales y espacios verdes. Cuadernos de la Sociedad Española de Ciencias Forestales, (41), 281-290. https://doi.org/10.1016/j.ecolind.2012.03.003

Morgan, R. P. (2009). Soil erosion and conservation. John Wiley & Sons.

Noy-Meir, I. (1973). Desert ecosystems: environment and producers. Annual review of ecology and systematics, 25-51. https://doi.org/10.1146/annurev.es.04.110173.000325

Okin, G. S., Parsons A. J., Wainwright, J., Herrick J.E., Bestelmeyer, B. T., Peters, D. C., Fredrickson, L. (2009). Do changes in connectivity explain desertification? BioScience, 59(3), 237-244. https://doi.org/10.1525/bio.2009.59.3.8

Okin, G. S., Heras, M. M., Saco, P. M., Throop, H. L., Vivoni, E. R., Parsons, A. J., ... y Peters, D. P. (2015). Connectivity in dryland landscapes: shifting concepts of spatial interactions. Frontiers in Ecology and the Environment, 13(1), 20-27. https://doi.org/10.1890/140163

Oliva G., J. Gaitán, D. Bran, V. Nakamatsu, J. Salomone, G. Buono, J. Escobar, D. Ferrante, G. Humano, G. Ciari, D. Suarez, W. Opazo, E. Adema y D. Celdrán. (2011). Manual para la instalación y lectura de monitores MARAS. PNUD, Buenos Aires.

Peters, D. P., Gosz, J. R., Pockman, W. T., Small, E. E., Parmenter, R. R., Collins, S. L. y Muldavin, E. (2006). Integrating patch and boundary dynamics to understand and predict biotic transitions at multiple scales. Landscape Ecology, 21(1), 19-33. https://doi.org/10.1007/s10980-005-1063-3

Ridolfi, L., D'Odorico, P., Porporato, A. y Rodriguez-Iturbe, I. (2003). Stochastic soil moisture dynamics along a hillslope. Journal of Hydrology, 272(1-4), 264-275. https://doi.org/10.1016/S0022-1694(02)00270-6

Rodriguez‐Iturbe, I. (2000). Ecohydrology: A hydrologic perspective of climate‐soil‐vegetation dynamics. Water Resources Research, 36(1), 3-9. https://doi.org/10.1029/1999WR900210

Saco, P. M., Moreno-de las Heras, M., Keesstra, S., Baartman, J., Yetemen, O. y Rodríguez, J. F. (2018). Vegetation and soil degradation in drylands: non-linear feedbacks and early warning signals. Current Opinion in Environmental Science & Health, 5, 67-72. https://doi.org/10.1016/j.coesh.2018.06.001

Saco, P. M., Rodríguez, J. F., Moreno-de las Heras, M., Keesstra, S., Azadi, S., Sandi, S., ... Rossi, M. J. (2020). Using hydrological connectivity to detect transitions and degradation thresholds: Applications to dryland systems. Catena, 186, 104354. https://doi.org/10.1016/j.catena.2019.104354

Seyfried, M. S. y Wilcox, B. P. (1995). Scale and the nature of spatial variability: Field examples having implications for hydrologic modeling. Water Resources Research, 31(1), 173-184. https://doi.org/10.1029/94WR02025

Thurow, T. L. (2000). Hydrologic effects on rangeland degradation and restoration processes. In Rangeland desertification. (pp. 53-66). Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9602-2_5

Tittonell, P. A., Hara, S. M., Alvarez, V. E., Aramayo, M. V., Bruzzone, O. A., Easdale, M. H., Enriquez, A.S., ... y El Mujtar, V. A. (2021). Ecosystem services and disservices associated with pastoral systems from Patagonia, Argentina–A review. Cahiers Agricultures, 30, 43. https://doi.org/10.1051/cagri/2021029

Tongway, D. (1995). Monitoring soil productive potential. Environ Monit Assess. 37, 303–318. https://doi.org/10.1007/BF00546897

Tongway, D. y Hindley, N. (2004). Landscape function analysis: a system for monitoring rangeland function. African journal of range and forage science, 21(2), 109-113. https://doi.org/10.2989/10220110409485841

Turnbull, L., Wainwright, J. y Brazier, R. E. (2010). Changes in hydrology and erosion over a transition from grassland to shrubland. Hydrological Processes: An International Journal, 24(4), 393-414. https://doi.org/10.1002/hyp.7491

Vásquez-Méndez, R., Ventura-Ramos, E., Oleschko, K., Hernández-Sandoval, L., Parrot, J. F. y Nearing, M. A. (2010). Soil erosion and runoff in different vegetation patches from semiarid Central Mexico. Catena, 80(3), 162-169. https://doi.org/10.1016/j.catena.2009.11.003

Veron, S. R. y Paruelo, J. M. (2010). Desertification alters the response of vegetation to changes in precipitation. Journal of Applied Ecology, 47(6), 1233-1241. https://doi.org/10.1111/j.1365-2664.2010.01883.x

Wilcox, B. P., Maitre, D. L., Jobbagy, E., Wang, L. y Breshears, D. D. (2017). Ecohydrology: processes and implications for rangelands. In: Briske, D. (Ed.) Rangeland systems (pp. 85-129). Springer, Cham. https://doi.org/10.1007/978-3-319-46709-2_3

Published

27-12-2023

How to Cite

Aramayo, V., Cremona, M. V., & Nosetto, M. D. (2023). HYDROLOGICAL BEHAVIOR OF RANGELANDS UNDER DIFFERENT DEGRADATION CONDITIONS IN NORTHWESTERN ARID PATAGONIA. Ciencia Del Suelo, 41(2), 223–237. Retrieved from https://ojs.suelos.org.ar/index.php/cds/article/view/799

Issue

Section

Manejo y Conservación de Suelos y Aguas. Riego y Drenaje