STUBBLE STRUCTURE AND AVAILABLE WATER UNDER NO-TILLAGE IN THE SEMI-ARID SOUTHERN PAMPEAN REGION
Keywords:
Winter crops, atmosphere-soil interface, water conservationAbstract
Critical processes related to water dynamics occur mainly at the soil-atmosphere interface. The structure of crop stubble cover, both in quantity and distribution, affects the soil surface microclimate and, consequently, on the degree of water conservation. The aim of this work was to evaluate changes in the soil-atmosphere interface and their impacts on soil water as affected by different crop residue structures. The experiment was carried out at the Experimental Station of the National Institute of Agricultural Technology in Hilario Ascasubi, Villarino, Buenos Aires. Three winter cereals (wheat, rye, and oats) were evaluated as preceding crops of wheat from June 2017 to December 2020, that is, two consecutive cycles of biannual agricultural rotations with winter cereals. Dry biomass quantification, its distribution by strata, and the stem area index were used to evaluate stubble structure at the end of fallow. In addition, soil temperature, relative wind speed, and water dynamics in the fallow were determined. Although preceding winter crops and mainly their stubble arrangement showed differences in biomass contribution and cover structure, similar soil cover was achieved. Soil temperature and wind speed were affected by stubble arrangement but were unaffected by the preceding crop. Stubble arrangement modified fallow efficiency, moisture at seeding of the subsequent crop, and soil moisture evolution up to 13 days after a rainfall event. The stubble arrangement and winter cereal preceding crops impacted on the soil-atmosphere interface and, consequently, on soil water dynamics.
References
Aase, J. y Siddoway, F. (1980). Stubble height effects on seasonal microclimate, water balance, and plant development of no-till winter wheat. Agricultural meteorology, 21(1), 1-20. https://doi.org/10.1016/0002-1571(80)90065-5.
Aiken, R., Nielsen, D. y Ahuja, L. (2003). Scaling effects of standing crop residues on the wind profile. Agronomy Journal, 95(4), 1041-1046. https://doi.org/10.2134/agronj2003.1041.
Aiken, R., Flerchinger, G., Farahani, H. y Johnsen, K. (1997). Energy balance simulation for surface soil and residue temperatures with incomplete cover. Agronomy Journal 89(3), 404-415. https://doi.org/10.2134/agronj1997.00021962008900030007x.
Amigone, M., Kloster, A., Chiacchiera, S., Conde, M. y Masiero, B. (1997). Verdeos de invierno. Invernada bovina en zonas mixtas. Centro Regional Córdoba. INTA. Información Técnica N° 35.
Blake, G. y Hartge, K. (1986). Bulk density. En: Klute, A (Ed.), Methods of Soil Analysis. Part 1. Agronomy. Second ed. American Society of Agronomy, Madison, WI, USA, 363–375.
Bohn, V., Sánchez, R., Carrascal, C. y Romagnoli, F. (2014). Estudio Preliminar de Variables Climatológicas y Productividad de los Suelos (RESAP, Argentina). XXIV Congreso Argentino de la Ciencia del Suelo II Reunión Nacional, 1-6.
Bond, J. y Willis, W. (1970). Soil water evaporation: first stage drying as influenced by surface residue and evaporation potential. Soil Science Society of America Journal, 34(6), 924-928. https://doi.org/10.2136/sssaj1970.03615995003400060030x.
Bouyoucos, G. (1962). Hydrometer method for making particle size analysis of soils. Agronomy Journal, 54, 4661-4665.
Bray, R. y Kurtz, L. (1945). Determination of total, organic, and available forms of phosphorus in soils. Soil science, 59(1), 39-46.
Bremner, J. (1996). Nitrogen - Total. In: Sparks, DL. (Ed), Methods of soil analysis. Part 3 - Chemical Methods. Chapter 37. ASA, SSSA, CSSA, Madison WI, 1085-1121.
Brown, P. y Dickey, D. (1970). Losses of wheat straw residue under simulated field conditions. Soil Science Society of America Journal, 34(1), 118-121. https://doi.org/10.2136/sssaj1970.03615995003400010032x.
Cantero Martínez, C., Anga´s, P. y Lampurlanes, J. (2007). Long‐term yield and water use efficiency under various tillage systems in Mediterranean rainfed conditions. Annals of Applied Biology, 150(3), 293-305. https://doi.org/10.1111/j.1744-7348.2007.00142.x.
Cutforth, H. y McConkey, B. (1997). Stubble height effects on microclimate, yield, and water use efficiency of spring wheat grown in a semiarid climate on the Canadian prairies. Canadian journal of plant science, 77(3), 359-366. https://doi.org/10.4141/P96-153.
D'amico, J., Varela, P., Justianovich, S. y Hall, M. (2016). Dimensionamiento de un sistema de generación fotovoltaico para el riego de cebolla en el valle bonaerense del río Colorado. EEA Hilario Ascasubi, INTA. Informe técnico Nº 48. ISSN 0328-3399. https://repositorio.inta.gob.ar/handle/20.500.12123/12325.
Di Rienzo, J., Casanoves, F., Balzarini, M., Gonzalez, L., Tablada, M. y Robledo, C. (2020). InfoStat. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. http://www.infostat.com.ar.
Douglas, C. y Rickman, R. (1992). Estimating crop residue decomposition from air temperature, initial nitrogen content, and residue placement. Soil Science Society of America Journal, 56(1), 272-278. https://doi.org/10.2136/sssaj1992.03615995005600010042x.
Fabrizzi, K., García, F., Costa, J. y Picone, L. (2005). Soil water dynamics, physical properties and corn and wheat responses to minimum and no-tillage systems in the southern Pampas of Argentina. Soil and Tillage Research, 81(1), 57-69. https://doi.org/10.1016/j.still.2004.05.001.
Flerchinger, G., Sauer, T. y Aiken, R. (2003). Effects of crop residue cover and architecture on heat and water transfer at the soil surface. Geoderma, 116(1-2), 217-233. https://doi.org/10.1016/S0016-7061(03)00102-2.
Freitas, P., Mantovani, E., Sediyama, G. e Costa, L. (2006). Influência da cobertura de resíduos de culturas nas fases da evaporação direta da água do solo. Revista Brasileira de Engenharia Agrícola e Ambiental, 10, 104-111. https://doi.org/10.1590/S1415-43662006000100016.
Gómez Waigel, M. y Vigna, C. (2022). Evaluación de forrajeras invernales bajo dos momentos de aprovechamiento en un ambiente semiárido. Tesis de grado. Universidad Nacional de La Pampa. Facultad de Agronomía. 26p. https://repo.unlpam.edu.ar/handle/unlpam/7874.
Hagen, L. (1996). Crop residue effects on aerodynamic processes and wind erosion. Theoretical and Applied Climatology, 54(1), 39-46. https://doi.org/10.1007/BF00863557.
Hagen, L. y Armbrust, D. (1994). Plant canopy effects on wind erosion saltation. Transactions of the ASAE, 37(2), 461-465. https://doi.org/10.13031/2013.28097.
Holman, J., Roberts, T. y Maxwell, S. (2016). Fallow replacement crop (cover crops, annual forages, and short-season grain crops) effects on wheat and grain sorghum yields. Kansas Agricultural Experiment Station Research Reports, 2(7), 2. http://dx.doi.org/10.4148/2378-5977.1247.
Horton, R., Bristow, K., Kluitenberg, G. y Sauer, T. (1996). Crop residue effects on surface radiation and energy balance. Theoretical and Applied Climatology, 54(1), 27-37. https://doi.org/10.1007/BF00863556.
Iurman, D. (2009). Diagnóstico y evaluación económica de alternativas tecnológicas para productores agropecuarios familiares de la zona de secano del partido de Patagones (Buenos Aires). Tesis de Magíster en Economía Agraria y Administración Rural, Universidad Nacional del Sur, 195 p. http://repositoriodigital.uns.edu.ar/handle/123456789/2027.
Kennelly, J. y Weinberg, Z. (2003). Small grain silage. Silage science and technology, 42, 749-779. https://doi.org/10.2134/agronmonogr42.c16.
Kozak, J., Ahuja, L., Green, T. y Ma, L. (2007). Modelling crop canopy and residue rainfall interception effects on soil hydrological components for semi‐arid agriculture. Hydrological Processes: An International Journal, 21(2), 229-241. https://doi.org/10.1002/hyp.6235.
Kruger, H., Zilio, J. y Frolla, F. (5-9 de mayo de 2014). Procesos en la interfase suelo-atmósfera que inciden en la eficiencia de uso del agua [Trabajo expandido]. XXIV Congreso Argentino de la Ciencia del Suelo, Bahía Blanca, Buenos Aires, Argentina.
Kruger, H. y Quiroga, A. (2013). La interfase suelo–atmósfera y su valor estratégico en regiones semiáridas. En C. Álvarez, A. Quiroga, D. Santos y M. Bodrero (Eds.), Contribución de los cultivos de cobertura a la sostenibilidad de los sistemas de producción (pp. 5-6). INTA. https://repo.unlpam.edu.ar/handle/unlpam/89.
López, M. y Arrue, J. (1997). Growth, yield and water use efficiency of winter barley in response to conservation tillage in a semi-arid region of Spain. Soil and Tillage Research, 44(1-2), 35-54. https://doi.org/10.1016/S0167-1987(97)00030-5.
Madurga, M. (2005). Los colores del agua, el agua virtual y los conflictos hídricos. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales de Madrid, 99, 369-389. https://rac.es/ficheros/doc/00244.pdf.
Mathews, O. y Army, T. (1960). Moisture storage on fallowed wheatland in the Great Plains. Soil Science Society of America Journal, 24(5), 414-418. https://doi.org/10.2136/sssaj1960.03615995002400050029x.
McMaster, G., Aiken, R. y Nielsen, D. (2000). Optimizing wheat harvest cutting height for harvest efficiency and soil and water conservation. Agronomy Journal, 92(6), 1104-1108. https://doi.org/10.2134/agronj2000.9261104x.
Monzon, J., Sadras, V. y Andrade, F. (2006). Fallow soil evaporation and water storage as affected by stubble in sub-humid (Argentina) and semi-arid (Australia) environments. Field Crops Research, 98(2-3), 83-90. https://doi.org/10.1016/j.fcr.2005.12.010.
Parr, J. y Papendick, R. (1978). Factors affecting the decomposition of crop residues by microorganisms. Crop residue management systems, 31, 101-129. https://doi.org/10.2134/asaspecpub31.c6.
Passioura, J. y Angus, J. (2010). Improving productivity of crops in water-limited environments. Advances in Agronomy, 106, 37-75. https://doi.org/10.1016/S0065-2113(10)06002-5.
Pérez, S., Sierra, E. y Casagrande, G. (2003). Comportamiento de las precipitaciones (1918/2000) en el centro oeste de Buenos Aires (Argentina). Revista de la facultad de agronomía; volumen 14, Nº 1/2, 39-46. Universidad Nacional de La Pampa. Santa Rosa, La Pampa, Argentina. https://repo.unlpam.edu.ar/handle/unlpam/5691.
Quiroga, A., Fernández, R. y Álvarez, C. (2018). Análisis y evaluación de propiedades físico hídrica de los suelos. Ediciones INTA. 123 p. ISBN 978-987-521-937-3. https://repositorio.inta.gob.ar/handle/20.500.12123/3834.
Quiroga, A., Funaro, D., Fernández, R. y Noellemeyer, E. (2005). Factores edáficos y de manejo que condicionan la eficiencia del barbecho en la Región Pampeana. Ciencia del Suelo, 23(1), 79-86. http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S1850-20672005000100009.
Rillo, S. (2012). Cultivos de cobertura para mejorar las condiciones del suelo en rotaciones con alta frecuencia de soja. Tesis de maestría, Facultad de Agronomía, Universidad de Buenos Aires. 54 p. https://repositorio.inta.gob.ar/handle/20.500.12123/6123.
Sánchez, R., Pezzola, A. y Cepeda, J. (1998). Caracterización edafoclimática del área de influencia del INTA EEA Hilario Ascasubi. Partidos de Villarino y Patagones, Pcia. de Buenos Aires. Boletín de divulgación N° 18. ISSN 0328-3321.
Scherger, M., Rosell, M. y Campo, A. (2012). Impacto ambiental en áreas marginales del rio Colorado, provincia de Buenos Aires, Argentina. Perspectiva Geográfica. ISSN: 0123-3769, Vol. 17, 9-28. https://doi.org/10.19053/01233769.2260.
Sharratt, B. (2002). Corn stubble height and residue placement in the northern US Corn Belt: Part I. Soil physical environment during winter. Soil and Tillage Research, 64(3-4), 243-252. https://doi.org/10.1016/S0167-1987(01)00260-4.
Siddoway, F., Chepil, W. y Armbrust, D. (1965). Effect of kind, amount, and placement of residue on wind erosion control. Trans. ASAE 8:327–331.
Smika, D. (1983). Soil water change as related to position of wheat straw mulch on the soil surface. Soil Science Society of America Journal, 47(5), 988-991. https://doi.org/10.2136/sssaj1983.03615995004700050029x.
Soil Survey Staff. (2022). Keys to Soil Taxonomy, 13th ed. USDA-Natural Resources Conservation Service. 401 p.
Sommer, R., Piggin, C., Haddad, A., Hajdibo, A., Hayek, P. y Khalil, Y. (2012). Simulating the effects of minimum tillage and crop residue retention on water relations and yield of wheat under rainfed semiarid Mediterranean conditions. Field Crop Research 132, 40-52. https://doi.org/10.1016/j.fcr.2012.02.024.
Steiner, J. y Schomberg, H. (1996). Impacts of crop residue at the Earth-atmosphere interface: introduction. Theoretical and Applied Climatology, 54(1), 1-4. https://doi.org/10.1007/BF00863553.
Swella, G., Warda, P., Siddique, K. y Flower, K. (2015). Combinations of tall standing and horizontal residue affect soil water dynamics in rainfed conservation agriculture systems. Soil & Tillage Research, 147, 30-38. https://doi.org/10.1016/j.still.2014.11.004.
Unger, P. (1978). Straw‐mulch rate effect on soil water storage and sorghum yield. Soil Science Society of America Journal, 42(3), 486-491. https://doi.org/10.2136/sssaj1978.03615995004200030023x.
Van Doren, D. y Allmaras, R. (1978). Effect of residue management practices on the soil physical environment, microclimate, and plant growth. Crop residue management systems, 31, 49-83. https://doi.org/10.2134/asaspecpub31.c4.
Van de Ven, T., Fryrear, D. y Spaan, W. (1989). Vegetation characteristics and soil loss by wind. Journal of Soil and Water Conservation, 44(4), 347-349. https://www.jswconline.org/content/44/4/347.
Walkey, A. y Black, T. (1934). An examination of the Dugtijaraff method for determining soil organic matter and proposed modification of the chronic and titration method. Soil Science, 37(1), 23-38.
Willis, W. y Bond, J. (1971). Soil water evaporation: Reduction by simulated tillage. Soil Science Society of America Proceedings, 35(4), 526-529. https://doi.org/10.2136/sssaj1971.03615995003500040016x.
Wilhelm, W., Johnson, J., Hatfield, J., Voorhees, W. y Linden, D. (2004). Crop and soil productivity response to corn residue removal: A literature review. Agronomy journal, 96(1), 1-17. https://doi.org/10.2134/agronj2004.1000a.
Zhai, R., Kachanoski, R. y Voroney, R. (1990). Tillage effects on the spatial and temporal variation of soil water. Soil Science Society of America Journal, 54(1), 186-192. https://doi.org/10.2136/sssaj1990.03615995005400010029x.
Zhang, H., Fangel, J., Willats, W., Selig, M., Lindedam, J., Jorgensen, H. y Felby, C. (2014). Assessment of leaf/stem ratio in wheat straw feedstock and impact on enzymatic conversion. GCB Bioenergy, 6(1), 90-96. https://doi.org/10.1111/gcbb.12060.
Zhang, T. (2005). Influence of the seasonal snow cover on the ground thermal regime: An overview. Reviews of Geophysics, 43(4). https://doi.org/10.1029/2004RG000157.
Zubiaga, L., Vanzolini, J., Dunel, L., Storniolo, R., Ombrosi, D., Álvarez, C., Cantamutto, M. y Galantini, J. (13-16 de octubre de 2020a). Efecto de la arquitectura del rastrojo de cultivos de invierno bajo labranza cero: I. Conservación del agua del suelo [Trabajo expandido]. XXVII Congreso Argentino de la Ciencia del suelo, Corrientes, Argentina.
Zubiaga, L., Vanzolini, J., Dunel, L., Storniolo, R., Ombrosi, D., Álvarez, C., Cantamutto, M. y Galantini, J. (13-16 de octubre de 2020b). Efecto de la arquitectura del rastrojo de cultivos de invierno bajo labranza cero: II. Microclima de la interfase suelo-atmósfera [Trabajo expandido]. XXVII Congreso Argentino de la Ciencia del suelo, Corrientes, Argentina.
Zubiaga, L., Vanzolini, J., Dunel, L., Storniolo, R., Ombrosi, D., Álvarez, C., Cantamutto, M. y Galantini, J. (13-16 de octubre de 2020c). Efecto de la arquitectura del rastrojo de cultivos de invierno bajo labranza cero: III. Dinámica del agua del suelo luego de un evento de precipitación [Trabajo expandido]. XXVII Congreso Argentino de la Ciencia del suelo, Corrientes, Argentina.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Ciencia del Suelo
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.