MICROBIAL COMMUNITIES AFFECTED BY CAPTAN IN SOILS UNDER DIFFERENT MANAGEMENT PRACTICES
Keywords:
microbial community structure, enzyme activity, microbial abundanceAbstract
The application of fungicides has become a recurring method of modern agriculture. However, its frequent application could inhibit key processes in agroecosystems, particularly in the soil. Captan is a broad-spectrum, organochlorine, non-systemic fungicide widely used in agriculture. This study aimed to evaluate how different dosages of the fungicide captan affect the microbiota of soil subjected to different types of management and with a degradation gradient associated with the soil organic matter (SOM) content. The trial was conducted in a greenhouse and included soils with three types of management: pristine forest soil (L1), 2:1 rotation (soybean-corn) under no-tillage management (L2), and soybean monoculture under conventional tillage management (L3). The treatments were: control (0x), dosage 1.0 mg/kg soil (1x), and dosage 10 mg/kg soil (10x). Sampling was carried out 30 days after the application of captan. Enzymatic activities related to C, N, and P cycles, phospholipid fatty acid profiles (PLFA), and a quantification method for ribosomal RNA gene copy numbers (16S and 18S) were evaluated to assess the impact of captan on the structure and activities of microbial communities. Our results showed increases in enzyme activities and biomass in L1 soils at 1x doses compared to the control, except for gram-negative bacteria that increased at 10x dosages. However, the application of 10x dosages produced losses in activity and microbial biomass in the three types of soil. The lowest values of 16S and 18S rRNA copies were registered in the treatments with fungicide. The 16S bacterial rRNA did not present differences between the treatments in the L3 soils. In conclusion, the L1 soil presented greater sensitivity in its response to captan compared to the L2 and L3 soils under agricultural management.
References
Abbott, C. P. y Beckerman, J. L. (2018). Incorporating adjuvants with captan to manage common apple diseases. Plant Disease, 102(1), 231–236. https://doi.org/10.1094/PDIS-05-17-0629-RE
Adam, G. y Duncan, H. (2001). Development of a sensitive and rapid method for the measurement of total microbial activity using fluorescein diacetate (FDA) in a range of soils. Soil Biology and Biochemistry, 33(7–8), 943–951. https://doi.org/10.1016/S0038-0717(00)00244-3
Baćmaga, M., Wyszkowska, J. y Kucharski, J. (2018). The influence of chlorothalonil on the activity of soil microorganisms and enzymes. Ecotoxicology, 27(9), 1188–1202. https://doi.org/10.1007/s10646-018-1968-7
Baćmaga, M., Wyszkowska, J. y Kucharski, J. (2019). The biochemical activity of soil contaminated with fungicides. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 54(4), 252–262. https://doi.org/10.1080/03601234.2018.1553908
Bailey, G. W. y White, J. L. (1964). Soil-pesticide relationships: Review of Adsorption and Desorption of Organic Pesticides by Soil Colloids, with Implications Concerning Pesticide Bioactivity. Journal of Agricultural and Food Chemistry, 12(4), 324–332. https://doi.org/10.1021/jf60134a007
Bending, G. D., Rodríguez-Cruz, M. S. y Lincoln, S. D. (2007). Fungicide impacts on microbial communities in soils with contrasting management histories. Chemosphere, 69(1), 82–88. https://doi.org/10.1016/j.chemosphere.2007.04.042
Brodie, E., Edwards, S. y Clipson, N. (2003). Soil fungal community structure in a temperate upland grassland soil. FEMS Microbiology Ecology, 45(2), 105–114. https://doi.org/10.1016/S0168-6496(03)00126-0
Burns, R. G., DeForest, J. L., Marxsen, J., Sinsabaugh, R. L., Stromberger, M. E., Wallenstein, M. D., Weintraub, M. N. y Zoppini, A. (2013). Soil enzymes in a changing environment: Current knowledge and future directions. Soil Biology and Biochemistry, 58, 216–234. https://doi.org/10.1016/j.soilbio.2012.11.009
Chen, S. K., Edwards, C. A. y Subler, S. (2001). A microcosm approach for evaluating the effects of the fungicides benomyl and captan on soil ecological processes and plant growth. Applied Soil Ecology, 18(1), 69-82. https://doi.org/10.1016/S0929-1393(01)00135-4
Chiocchio, V. (2000). Effect of the fungicide benomyl on spore germination and hyphal length of the arbuscular mycorrhizal fungus Glomus mosseae. International Microbiology, 3(3), 173–175.
Chowdhury, A., Pradhan, S., Saha, M. y Sanyal, N. (2008). Impact of pesticides on soil microbiological parameters and possible bioremediation strategies. In Indian Journal of Microbiology (Vol. 48, Issue 1, pp. 114–127). https://doi.org/10.1007/s12088-008-0011-8
Coppola, L., Comitini, F., Casucci, C., Milanovic, V., Monaci, E., Marinozzi, M., Taccari, M., Ciani, M. y Vischetti, C. (2011). Fungicides degradation in an organic biomixture: Impact on microbial diversity. New Biotechnology, 29(1), 99–106. https://doi.org/10.1016/j.nbt.2011.03.005
Covacevich, F. y Echeverría, H. E. (2010). Indicadores para seleccionar inóculos de hongos micorrícicos arbusculares eficientes en suelos moderadamente ácidos. Ciencia Del Suelo, 28(1), 9–22.
Cycoń, M., Piotrowska-Seget, Z. y Kozdrój, J. (2010). Responses of indigenous microorganisms to a fungicidal mixture of mancozeb and dimethomorph added to sandy soils. International Biodeterioration and Biodegradation, 64(4), 316–323. https://doi.org/10.1016/j.ibiod.2010.03.006
Di Rienzo, J. A., Casanoves, F., Balzarini, M. G., Gonzalez, l., Tablada, M. y Robledo, C.W. (2017). Infostat - Software estadístico (No. 2017). Grupo infoStat, FCA, Universidad Nacional de Córdoba, Argentina. http://www.infostat.com.ar
Ding, H., Zheng, X., Zhang, J., Zhang, Y., Yu, J. y Chen, D. (2019). Influence of chlorothalonil and carbendazim fungicides on the transformation processes of urea nitrogen and related microbial populations in soil. Environmental Science and Pollution Research, 26(30), 31133–31141. https://doi.org/10.1007/s11356-019-06213-8
Dominchin, M. F., Verdenelli, R. A., Aoki, A. y Meriles, J. M. (2020). Soil microbiological and biochemical changes as a consequence of land management and water erosion in a semiarid environment. Archives of Agronomy and Soil Science, 66(6), 763–777. https://doi.org/10.1080/03650340.2019.1638915
Dominchin, M. F., Verdenelli, R. A., Berger, M. G., Aoki, A. y Meriles, J. M. (2021). Impact of N-fertilization and peanut shell biochar on soil microbial community structure and enzyme activities in a Typic Haplustoll under different management practices. European Journal of Soil Biology, 104, 103298. https://doi.org/10.1016/j.ejsobi.2021.103298
Dominchin, M. F., Verdenelli, R. A., Gil, S. V., Aoki, A., Marin, R. H. y Meriles, J. M. (2019). Effect of poultry biochar on chemical and microbiological properties in a typical haplustol soil under different land-use intensities. Ciencia Del Suelo, 37(2), 315–327.
Ekmekyapar, F. y Deveci, M. (2008). Dissipation of captan in soil and tomato plants in field conditions. Agrochimica, 52(5), 273–284.
El Azhari, N., Dermou, E., Barnard, R. L., Storck, V., Tourna, M., Beguet, J., Karas, P. A., Lucini, L., Rouard, N., Botteri, L., Ferrari, F., Trevisan, M., Karpouzas, D. G. y Martin-Laurent, F. (2018). The dissipation and microbial ecotoxicity of tebuconazole and its transformation products in soil under standard laboratory and simulated winter conditions. Science of the Total Environment, 637–638, 892–906. https://doi.org/10.1016/j.scitotenv.2018.05.088
Epelde, L., Burges, A., Mijangos, I. y Garbisu, C. (2014). Microbial properties and attributes of ecological relevance for soil quality monitoring during a chemical stabilization field study. Applied Soil Ecology, 75, 1–12. https://doi.org/10.1016/j.apsoil.2013.10.003
Fernandes, M. C., Cox, L., Hermosín, M. C. y Cornejo, J. (2006). Organic amendments affecting sorption, leaching and dissipation of fungicides in soils. Pest Management Science: formerly Pesticide Science, 62(12), 1207-1215. https://doi.org/10.1002/ps.1303
Fierer, N. y Jackson, J. (2005). Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Applied and Environmental Microbiology, 71(7), 4117. https://doi.org/10.1128/AEM.71.7.4117
Frasier, I., Noellemeyer, E., Figuerola, E., Erijman, L., Permingeat, H. y Quiroga, A. (2016). High quality residues from cover crops favor changes in microbial community and enhance C and N sequestration. Global Ecology and Conservation, 6, 242–256. https://doi.org/10.1016/j.gecco.2016.03.009
Garbeva, P., Van Veen, J. A. y Van Elsas, J. D. (2004). Microbial diversity in soil: Selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annual Review of Phytopathology, 42(29), 243–270. https://doi.org/10.1146/annurev.phyto.42.012604.135455
Garcia, C., Hernandez, T. y Costa, F. (1997). Potential use of dehydrogenase activity as an index of microbial activity in degraded soils. Communications in Soil Science and Plant Analysis, 28(1–2), 123–134. https://doi.org/10.1080/00103629709369777
Gavrilescu, M. (2005). Fate of pesticides in the environment and its bioremediation. Engineering in Life Sciences, 5(6), 497–526. https://doi.org/10.1002/elsc.200520098
Gill Kaur, H. y Garg, H. (2014). Pesticides: Environmental Impacts and Management Strategies. In Pesticides - Toxic Aspects (pp. 187–230). https://doi.org/10.5772/57399
Gu, L., Bai, Z., Jin, B., Hu, Q., Wang, H., Zhuang, G. y Zhang, H. (2010). Assessing the impact of fungicide enostroburin application on bacterial community in wheat phyllosphere. Journal of Environmental Sciences, 22(1), 134–141. https://doi.org/10.1016/S1001-0742(09)60084-X
Guo, P., Zhu, L., Wang, J. J., Wang, J. J., Xie, H. y Lv, D. (2015). Enzymatic activities and microbial biomass in black soil as affected by azoxystrobin. Environmental Earth Sciences, 74(2), 1353–1361. https://doi.org/10.1007/s12665-015-4126-z
Hai, B., Diallo, N. H., Sall, S., Haesler, F., Schauss, K., Bonzi, M., Assigbetse, K., Chotte, J. L., Munch, J. C. y Schloter, M. (2009). Quantification of key genes steering the microbial nitrogen cycle in the rhizosphere of sorghum cultivars in tropical agroecosystems. Applied and Environmental Microbiology, 75(15), 4993–5000. https://doi.org/10.1128/AEM.02917-08
Hamed, S. M., Okla, M. K., Al-Saadi, L. S., Hozzein, W. N., Mohamed, H. S., Selim, S. y AbdElgawad, H. (2022). Evaluation of the phycoremediation potential of microalgae for captan removal: Comprehensive analysis on toxicity, detoxification and antioxidants modulation. Journal of Hazardous Materials, 427, 128177. https://doi.org/10.1016/j.jhazmat.2021.128177
Hansda, A., Kumar, V. y Usmani, Z. (2014). Phytoremediation of heavy metals contaminated soil using plant growth promoting rhizobacteria (PGPR): A current perspective. Recent Research in Science and Technology, 6(1), 131–134. http://recent-science.com/
Hashimi, M. H., Hashimi, R. y Ryan, Q. (2020). Toxic Effects of Pesticides on Humans, Plants, Animals, Pollinators and Beneficial Organisms. Asian Plant Research Journal, 5(4), 37–47. https://doi.org/10.9734/aprj/2020/v5i430114
Howard, P. H. (2017). Handbook of environmental fate and exposure data: For organic chemicals, volume iii pesticides. In D. A. G. Philip H. Howard, Edward M. Michalenko, William F. Jarvis, Dipak K. Basu, Gloria W. Sage, William M. Meylan, Julie A. Beauman (Ed.), Handbook of Environmental Fate and Exposure Data: For Organic Chemicals, Volume III Pesticides (e-book 201). CRC Press. https://doi.org/10.1201/9780203719305
Ingham, E. R. (1985). Review of the effects of 12 selected biocides on target and non-target soil organisms. Crop Protection, 4(1), 3–32. https://doi.org/10.1016/0261-2194(85)90002-X
Jiang, J., Yang, Y., Wang, L., Cao, S., Long, T. y Liu, R. (2022). Effects of Chlorothalonil Application on the Physio-Biochemical Properties and Microbial Community of a Yellow–Brown Loam Soil. Agriculture (Switzerland), 12(5), 608. https://doi.org/10.3390/agriculture12050608
Kalia, A. y Gosal, S. K. (2011). Effect of pesticide application on soil microorganisms. Archives of Agronomy and Soil Science, 57(6), 569–596. https://doi.org/10.1080/03650341003787582
Kandeler, E. y Gerber, H. (1988). Short-term assay of soil urease activity using colorimetric determination of ammonium. Biology and Fertility of Soils, 6(1), 68–72. https://doi.org/10.1007/BF00257924
Karpouzas, D. G., Tsiamis, G., Trevisan, M., Ferrari, F., Malandain, C., Sibourg, O. y Martin-Laurent, F. (2016). ”LOVE TO HATE” pesticides: felicity or curse for the soil microbial community? An FP7 IAPP Marie Curie project aiming to establish tools for the assessment of the mechanisms controlling the interactions of pesticides with soil microorganisms. Environmental Science and Pollution Research, 23(18), 18947–18951. https://doi.org/10.1007/s11356-016-7319-4
Katsoula, A., Vasileiadis, S., Sapountzi, M. y Karpouzas, D. G. (2020). The response of soil and phyllosphere microbial communities to repeated application of the fungicide iprodione: Accelerated biodegradation or toxicity? FEMS Microbiology Ecology, 96(6), 56. https://doi.org/10.1093/femsec/fiaa056
Kurle, J. E. y Pfleger, F. L. (1996). Management influences on arbuscular mycorrhizal fungal species composition in a corn-soybean rotation. Agronomy Journal, 88(2), 155–161. https://doi.org/10.2134/agronj1996.00021962008800020007x
Lambin, E. F. y Meyfroidt, P. (2010). Land use transitions: Socio-ecological feedback versus socio-economic change. Land Use Policy, 27(2), 108–118. https://doi.org/10.1016/j.landusepol.2009.09.003
Liu, X. Z., Zhang, L. M., Prosser, J. I. y He, J. Z. (2009). Abundance and community structure of sulfate reducing prokaryotes in a paddy soil of southern China under different fertilization regimes. Soil Biology and Biochemistry, 41(4), 687–694. https://doi.org/10.1016/j.soilbio.2009.01.001
Madejón, E., Murillo, J., Moreno, F., López, M., Arrue, J., Alvaro-Fuentes, J. y Cantero, C. (2009). Effect of long-term conservation tillage on soil biochemical properties in Mediterranean Spanish areas. Soil and Tillage Research, 105(1), 55–62. https://doi.org/10.1016/j.still.2009.05.007
Maharjan, M., Sanaullah, M., Razavi, B. S. y Kuzyakov, Y. (2017). Effect of land use and management practices on microbial biomass and enzyme activities in subtropical top-and sub-soils. Applied Soil Ecology, 113, 22–28. https://doi.org/10.1016/j.apsoil.2017.01.008
Malek, M., Ohno, T., Suzuki, H., Kitamura, H., Kuroda, K. y Shimizu, M. (2020). A novel strain of endophytic Streptomyces for the biocontrol of strawberry anthracnose caused by Glomerella cingulata. Microbiological Research, 234(November 2019), 126428. https://doi.org/10.1016/j.micres.2020.126428
Malik, A. A., Dannert, H., Griffiths, R. I., Thomson, B. C. y Gleixner, G. (2015). Rhizosphere bacterial carbon turnover is higher in nucleic acids than membrane lipids: Implications for understanding soil carbon cycling. Frontiers in Microbiology, 6, 268. https://doi.org/10.3389/fmicb.2015.00268
Manlay, R. J., Feller, C. y Swift, M. J. (2007). Historical evolution of soil organic matter concepts and their relationships with the fertility and sustainability of cropping systems. In Agriculture, Ecosystems and Environment (Vol. 119, Issues 3–4, pp. 217–233). https://doi.org/10.1016/j.agee.2006.07.011
Martínez-Toledo, M. V., Salmerón, V., Rodelas, B., Pozo, C. y González-López, J. (1998). Effects of the fungicide Captan on some functional groups of soil microflora. Applied Soil Ecology, 7(3), 245–255. https://doi.org/10.1016/S0929-1393(97)00026-7
May, L. A., Smiley, B. y Schmidt, M. G. (2001). Comparative denaturing gradient gel electrophoresis analysis of fungal communities associated with whole plant corn silage. Canadian Journal of Microbiology, 47(9), 829–841. https://doi.org/10.1139/cjm-47-9-829
Medina, E. (2018). Efectos de los diferentes manejos agronómicos sobre indicadores bioquímicos y microbiológicos de calidad de suelos de viñedos, San Juan, Argentina. Tesis Doctoral, Universidad Nacional de San Juan. URL:https://ri.conicet.gov.ar/bitstream/handle/11336/83839/CONICET_Digital_Nro.39130da2-728d-4c8e-bcdc-aab52394acbc_A.pdf?sequence=2yisAllowed=y
Meena, R. S., Kumar, S., Datta, R., Lal, R., Vijayakumar, V., Brtnicky, M., Sharma, M. P., Yadav, G. S., Jhariya, M. K., Jangir, C. K., Pathan, S. I., Dokulilova, T., Pecina, V. y Marfo, T. D. (2020). Impact of agrochemicals on soil microbiota and management: A review. In Land, 9(2), 34. https://doi.org/10.3390/land9020034
Megadi, V. B., Tallur, P. N., Mulla, S. I. y Ninnekar, H. Z. (2010). Bacterial degradation of fungicide captan. Journal of Agricultural and Food Chemistry, 58(24), 12863–12868. https://doi.org/10.1021/jf1030339
Meriles, J. ., Vargas Gil, S., Conforto, C., Figoni, G., Lovera, E., March, G. y Guzmán, C. (2009). Soil microbial communities under different soybean cropping systems: Characterization of microbial population dynamics, soil microbial activity, microbial biomass, and fatty acid profiles. Soil and Tillage Research, 103(2), 271–281. https://doi.org/10.1016/j.still.2008.10.008
Muñoz-Leoz, B., Ruiz-Romera, E., Antigüedad, I. y Garbisu, C. (2011). Tebuconazole application decreases soil microbial biomass and activity. Soil Biology and Biochemistry, 43(10), 2176–2183. https://doi.org/10.1016/j.soilbio.2011.07.001
Pal, R., Chakrabarti, K., Chakraborty, A. y Chowdhury, A. (2005). Pencycuron application to soils: Degradation and effect on microbiological parameters. Chemosphere, 60(11), 1513–1522. https://doi.org/10.1016/j.chemosphere.2005.02.068
Pan, Y., Wu, Y., Li, X., Zeng, J. y Lin, X. (2019). Continuing Impacts of Selective Inhibition on Bacterial and Fungal Communities in an Agricultural Soil. Microbial Ecology, 78(4), 927–935. https://doi.org/10.1007/s00248-019-01364-0
Papadopoulou, E. S., Genitsaris, S., Omirou, M., Perruchon, C., Stamatopoulou, A., Ioannides, I. y Karpouzas, D. G. (2018). Bioaugmentation of thiabendazole-contaminated soils from a wastewater disposal site: Factors driving the efficacy of this strategy and the diversity of the indigenous soil bacterial community. Environmental Pollution, 233, 16–25. https://doi.org/10.1016/j.envpol.2017.10.021
Pérez-Brandán, C., Huidobro, J., Grümberg, B., Scandiani, M. M., Luque, A. G., Meriles, J. M. y Vargas-Gil, S. (2014). Soybean fungal soil-borne diseases: A parameter for measuring the effect of agricultural intensification on soil health. Canadian Journal of Microbiology, 60(2), 73–84. https://doi.org/10.1139/cjm-2013-0792
Perucci, P. (1992). Enzyme activity and microbial biomass in a field soil amended with municipal refuse. Biology and Fertility of Soils, 14(1), 54–60. https://doi.org/10.1007/BF00336303
Piotrowska-Seget, Z., Engel, R., Nowak, E. y Kozdrój, J. (2008). Successive soil treatment with captan or oxytetracycline affects non-target microorganisms. World Journal of Microbiology and Biotechnology, 24(12), 2843-2848. https://doi.org/10.1007/s11274-008-9815-2
Podio, N. S., Guzmán, C. A. y Meriles, J. M. (2008). Microbial community structure in a silty clay loam soil after fumigation with three broad spectrum fungicides. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 43(4), 333–340. https://doi.org/10.1080/03601230801941675
Prashar, P. y Shah, S. (2016). Impact of Fertilizers and Pesticides on Soil Microflora in Agriculture. In Sustainable Agriculture Reviews (19th ed., pp. 331–361). Springer International Publishing. https://doi.org/10.1007/978-3-319-26777-7_8
Rousk, J., Baath, E., Brookes, P. C., Lauber, C. L., Lozupone, C. A., Caporaso, J. G., Knight, R., Fierer, N., Bååth, E., Brookes, P. C., Lauber, C. L., Lozupone, C. A., Caporaso, J. G., Knight, R. y Fierer, N. (2010). Soil bacterial and fungal communities across a pH gradient in an arable soil. Isme Journal, 4(10), 1340–1351. https://doi.org/10.1038/ismej.2010.58
Rousk, J., Brookes, P. C. y Bååth, E. (2009). Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Applied and Environmental Microbiology, 75(6), 1589–1596. https://doi.org/10.1128/AEM.02775-08
Saha, A., Pipariya, A. y Bhaduri, D. (2016). Enzymatic activities and microbial biomass in peanut field soil as affected by the foliar application of tebuconazole. Environmental Earth Sciences, 75(7), 558. https://doi.org/10.1007/s12665-015-5116-x
Satapute, P., Kamble, M. V., Adhikari, S. S. y Jogaiah, S. (2019). Influence of triazole pesticides on tillage soil microbial populations and metabolic changes. Science of the Total Environment, 651, 2334–2344. https://doi.org/10.1016/j.scitotenv.2018.10.099
Satyavani, G., Chandrasehar, G., Varma, K. K., Goparaju, A., Ayyappan, S., Reddy, P. N. y Murthy, P. B. (2012). Toxicity Assessment of Expired Pesticides to Green Algae Pseudokirchneriella subcapitata . International Scholarly Research Notices, 2012, 1–10. https://doi.org/10.5402/2012/247072
Scariot, F. J., Jahn, L., Delamare, A. P. L. y Echeverrigaray, S. (2017). Necrotic and apoptotic cell death induced by Captan on Saccharomyces cerevisiae. World Journal of Microbiology and Biotechnology, 33(8), 0. https://doi.org/10.1007/s11274-017-2325-3
Serri, D. L., Pérez-Brandan, C., Meriles, J. M., Salvagiotti, F., Bacigaluppo, S., Malmantile, A. y Vargas-Gil, S. (2022). Development of a soil quality index for sequences with different levels of land occupation using soil chemical, physical and microbiological properties. Applied Soil Ecology, 180. https://doi.org/10.1016/j.apsoil.2022.104621
Shao, H. y Zhang, Y. (2017). Non-target effects on soil microbial parameters of the synthetic pesticide carbendazim with the biopesticides cantharidin and norcantharidin. Scientific Reports, 7(1), 1–12. https://doi.org/10.1038/s41598-017-05923-8
Spark, K. M. y Swift, R. S. (2002). Effect of soil composition and dissolved organic matter on pesticide sorption. Science of The Total Environment, 298(1), 147–161. https://doi.org/10.1016/S0048-9697(02)00213-9
Stemmer, M. (2004). Multiple-substrate enzyme assays: A useful approach for profiling enzyme activity in soils?. Soil Biology and Biochemistry, 36(3), 519–527. https://doi.org/10.1016/j.soilbio.2003.11.004
Sułowicz, S. y Piotrowska-Seget, Z. (2016). Response of microbial communities from an apple orchard and grassland soils to the first-time application of the fungicide tetraconazole. Ecotoxicology and Environmental Safety, 124, 193–201. https://doi.org/10.1016/J.ECOENV.2015.10.025
Thoms, C., Gattinger, A., Jacob, M., Thomas, F. M. y Gleixner, G. (2010). Direct and indirect effects of tree diversity drive soil microbial diversity in temperate deciduous forest. Soil Biology and Biochemistry, 42(9), 1558–1565. https://doi.org/10.1016/j.soilbio.2010.05.030
Tortella, G. R., Mella-Herrera, R. A., Sousa, D. Z., Rubilar, O., Acuña, J. J., Briceño, G. y Diez, M. C. (2013). Atrazine dissipation and its impact on the microbial communities and community level physiological profiles in a microcosm simulating the biomixture of on-farm biopurification system. Journal of Hazardous Materials, 260, 459–467. https://doi.org/10.1016/j.jhazmat.2013.05.059
Tortella, G. R., Rubilar, O., Cea, M., Rodríguez-Rodríguez, C., Seguel, A. y Parada, J. (2019). Sorption Parameters of Carbendazim and Iprodione in the Presence of Copper Nanoparticles in Two Different Soils. Journal of Soil Science and Plant Nutrition, 19(3), 469–476. https://doi.org/10.1007/s42729-019-00037-8
Ullah, M. R., Carrillo, Y. y Dijkstra, F. A. (2021). Biocides provide a source of carbon and nitrogen directly to surviving microbes and indirectly through a pulse in microbial necromass. Applied Soil Ecology, 160, 103862. https://doi.org/10.1016/j.apsoil.2020.103862
Vasileiadis, S., Puglisi, E., Papadopoulou, E. S., Pertile, G., Suciu, N., Pappolla, R. A., Tourna, M., Karas, P. A., Papadimitriou, F., Kasiotakis, A., Ipsilanti, N., Ferrarini, A., Sulowicz, S., Fornasier, F., Menkissoglu-Spiroudi, U., Nicol, G. W., Trevisan, M., Karpouzas, D. G., Sułowicz, S., … Karpouzas, D. G. (2018). Blame It on the Metabolite: 3,5-Dichloroaniline Rather than the Parent Compound Is Responsible for the Decreasing Diversity and Function of Soil Microorganisms. Applied and Environmental Microbiology, 84(22), e01536-18. https://doi.org/10.1128/AEM.01536-18
Vázquez, C., Verdenelli, R. A., Merlo, C., Pérez Brandan, C., Kowaljow, E. y Meriles, J. M. (2022). Influence of land-use changes on microbial community structure and diversity in a semiarid region. Land Degradation and Development. https://doi.org/10.1002/ldr.4416
Verdenelli, R. A., Dominchin, M. F., Pérez-Brandan, C., Rovea, A., Vargas-Gil, S. y Meriles, J. M. (2019). Effect of long-term mineral fertilisation on soil microbial abundance, community structure and diversity in a Typic Hapludoll under intensive farming systems. Annals of Applied Biology, 175(3), 363–375. https://doi.org/10.1111/aab.12546
Verdenelli, R. A., Lamarque, A. L. y Meriles, J. M. (2012). Short-term effects of combined iprodione and vermicompost applications on soil microbial community structure. Science of the Total Environment, 414, 210–219. https://doi.org/10.1016/j.scitotenv.2011.10.066
Vergnoux, A., Guiliano, M., Di Rocco, R., Domeizel, M., Théraulaz, F. y Doumenq, P. (2011). Quantitative and mid-infrared changes of humic substances from burned soils. Environmental Research, 111(2), 205–214. https://doi.org/10.1016/j.envres.2010.03.005
Vuyyuru, M., Sandhu, H. S., Mccray, J. M. y Raid, R. N. (2018). Effects of Soil-Applied Fungicides on Sugarcane Root and Shoot Growth , Rhizosphere Microbial Communities , and Nutrient Uptake. Agronomy, 8(223), 1–17. https://doi.org/10.3390/agronomy8100223
Wang, F., Li, X., Zhu, L., Du, Z., Zhang, C., Wang, J. J., Wang, J. J. y Lv, D. (2018). Responses of soil microorganisms and enzymatic activities to azoxystrobin in cambisol. Polish Journal of Environmental Studies, 27(6), 2775–2784. https://doi.org/10.15244/pjoes/81086
Wang, X., Lu, Z., Miller, H., Liu, J., Hou, Z., Liang, S., Zhao, X., Zhang, H. y Borch, T. (2020). Fungicide azoxystrobin induced changes on the soil microbiome. Applied Soil Ecology, 145, 103343. https://doi.org/10.1016/j.apsoil.2019.08.005
Wang, X., Song, M., Gao, C., Dong, B., Zhang, Q., Fang, H. y Yu, Y. (2009). Carbendazim induces a temporary change in soil bacterial community structure. Journal of Environmental Sciences, 21(12), 1679–1683. https://doi.org/10.1016/S1001-0742(08)62473-0
Wightwick, A. M., Reichman, S. M., Menzies, N. W. y Allinson, G. (2013). The Effects of Copper Hydroxide, Captan and Trifloxystrobin Fungicides on Soil Phosphomonoesterase and Urease Activity. Water, Air, y Soil Pollution, 224(12). https://doi.org/10.1007/s11270-013-1703-1
Wu, X., Xu, J., Dong, F., Liu, X. y Zheng, Y. (2014). Responses of soil microbial community to different concentration of fomesafen. Journal of Hazardous Materials, 273, 155–164. https://doi.org/10.1016/j.jhazmat.2014.03.041
Yan, H., Wang, D., Dong, B., Tang, F., Wang, B., Fang, H. y Yu, Y. (2011). Dissipation of carbendazim and chloramphenicol alone and in combination and their effects on soil fungal:Bacterial ratios and soil enzyme activities. Chemosphere, 84(5), 634–641. https://doi.org/10.1016/j.chemosphere.2011.03.038
Ye, X., Dong, F. y Lei, X. (2018). Microbial Resources and Ecology - Microbial Degradation of Pesticides. Natural Resources Conservation and Research, 1(1), 22–28. https://doi.org/10.24294/nrcr.v1i1.242
Zhang, C., Zhou, T., Zhu, L., Du, Z., Li, B., Wang, J., Wang, J. y Sun, Y. (2019). Using enzyme activities and soil microbial diversity to understand the effects of fluoxastrobin on microorganisms in fluvo-aquic soil. Science of the Total Environment, 666, 89–93. https://doi.org/10.1016/j.scitotenv.2019.02.240
Zhang, M., Teng, Y., Zhang, Y., Ford, R. y Xu, Z. (2017). Effects of nitrification inhibitor 3,4-dimethylpyrazole phosphate and fungicide iprodione on soil fungal biomass and community: based on internal transcribed spacer region. Journal of Soils and Sediments, 17(4), 1021–1029. https://doi.org/10.1007/s11368-016-1644-6
Zhang, M., Wang, W., Zhang, Y., Teng, Y. y Xu, Z. (2017). Effects of fungicide iprodione and nitrification inhibitor 3, 4-dimethylpyrazole phosphate on soil enzyme and bacterial properties. Science of the Total Environment, 599–600, 254–263. https://doi.org/10.1016/j.scitotenv.2017.05.011
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Ciencia del Suelo
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.