REPEATED TRAFFIC OVER THE SAME TRACK: EFFECT ON THE PHYSICAL PROPERTIES OF A TYPIC ARGIUDOLL

Authors

  • Guido Bellora Universidad Nacional de La Plata
  • Luis Alberto Lozano CONICET
  • C. Germán Soracco CONICET
  • Facundo Guilino Universidad Nacional de La Plata
  • Nicolas Polich UNLP-CONICET
  • María Paz Salazar CONICET
  • Rafael Villarreal CONICET
  • Telmo Palancar Universidad Nacional de La Plata

Keywords:

soil compaction, penetration resistance, dry matter yield, infiltration

Abstract

With the increase in machinery mass and repeated traffic, compaction problems have arised. In addition, plots are frequently trafficked in conditions of low bearing capacity, generating a significant compaction of the superficial soil (tracks). A trial was carried out to determine the influence of the number of passes and soil moisture during transit on soil compaction. Tractor passes (1, 3 and 10) were done with the soil at two moisture contents (34% = wet and 24% = partially dry). Track depth, gravimetric moisture content, penetration resistance, and dry matter production were measured on a natural grassland at two moments: initial (24 h after a rainfall event) and final (when the soil PS). Additionally, hydraulic conductivity at different water pressure heads, pore size distribution and bulk density (DAP) were determined at the final measure. The greatest track depth occurred with wet traffic and with the increase in the number of passes. In the treatments with traffic, values of penetration resistance that limit or stop root growth and consequently compromise crop yield were reached. The treatment with the highest number of partially dry passes had the lowest dry matter yield. An increase in DAP and a decrease in macroporosity were observed as a result of repeated traffic, especially in dry conditions (P<0.05). The treatment with the highest number of passes in PS was the one with the lowest yield of dry matter.

References

Alakukku, L. (1996). Persistence of soil compaction due to high axle load traffic. I Short- term effects on the properties of clay and organic soil. Soil and Tillage Research, 37, 211-222. https://doi.org/10.1016/0167-1987(96)01017-3

Alakukku, L. (1997). Properties of fine‐textured subsoils as affected by high axle load traffic. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 47(2), 81-88. https://doi.org/10.1080/09064719709362444

Ankeny, M. D., Ahmed, M., Kaspar, T. C. y Horton, R. (1991). Simple field method for determining unsaturated hydraulic conductivity. Soil Science Society of America Journal, 55(2), 467-470. https://doi.org/10.2136/sssaj1991.03615995005500020028x

Ashburner, J. E. y Sims, B. G. (1984). Elementos de diseño del tractor y herramientas de labranza (Vol. 56). Instituto Interamericano de Cooperación para la Agricultura.

Bagarello, V., Sgroi, A. (2004). Using the single-ring infiltrometer method to detect temporal changes in surface soil field-saturated hydraulic conductivity. Soil & Tillage Research, 76, 13–24. https://doi.org/10.1016/j.still.2003.08.008.

Botta, G. F., Becerra, A. T. y Tourn, F. B. (2009). Effect of the number of tractors passes on soil rut depth and compaction in two tillage regimes. Soil and Tillage Research, 103(2), 381-386. https://doi.org/10.1016/j.still.2008.12.002

Bottinelli, N., Hallaire, V., Goutal, N., Bonnaud, P. y Ranger, J. (2014). Impact of heavy traffic on soil macroporosity of two silty forest soils: Initial effect and short-term recovery. Geoderma, 217, 10-17. https://doi.org/10.1016/j.geoderma.2013.10.025

Colombi, T., Chagas Torres, L., Walter, A. y Keller, T. (2018). Feedbacks between soil penetration resistance, root architecture and water uptake limit water accessibility and crop growth – A vicious circle. Science of The Total Environment V, 626, 1026-1035. https://doi.org/10.1016/j.scitotenv.2018.01.129

Draghi, L., Jorajuría-Collazo, D., Sarena, D., Bailleres, M., Melani, E., Castillo, J. M., Cerisola, C. y Palancar, T. (2015). Impacto del tránsito en dos sistemas de siembra. Agrociencia Uruguay, 19(2), 19-67. http://www.scielo.edu.uy/scielo.php?script=sci_arttext&pid=S230115482015000200008&lng=es&nrm=iso&tlng=es

Ellies, A., Smith, R., Cuevas, B., Dörner, F. y Pröschle, A. (2000). Efecto de la humedad y frecuencia del tránsito sobre la distribución de tensiones de distintos suelos. Agro Sur, 28(2), 60–68. https://doi.org/10.4206/agrosur.2000.v28n2-08

García Rodríguez, E., Gutierrez Rodríguez, F., Ramírez Dávila, J. F., González-Huerta, A., Pérez López, D. D. J. y Serrato Cuevas, R. (2020). Evaluación de la intensidad del tráfico de tractores e implementos en un suelo agrícola. Revista Mexicana de Ciencias Agrícolas, 11(4), 753-766. https://doi.org/10.29312/remexca.v11i4.2133

Håkansson, I. y Lipiec, J. (2000). A review of the usefulness of relative bulk density values in studies of soil structure and compaction. Soil & Tillage Research, 53(2), 71-85. https://doi.org/10.1016/S0167-1987(99)00095-1

Hamza, M. A. y Anderson, W. K. (2005). Soil compaction in cropping systems a review of the nature, causes and possible solutions. Soil & Tillage Research, 82(2), 121-145. https://doi.org/10.1016/j.still.2004.08.009

Hassan F. U., Ahmad, M., Ahmad, N. y Kaleem Abbasi, M. (2007). Effects of subsoil compaction on yield and yield attributes of wheat in the sub-humid region of Pakistan. Soil & Tillage Research, 96(1-2), 361-366. https://doi.org/10.1016/j.still.2007.06.005

Hernandez-Ramirez, G., Lawrence-Smith, E.J., Sinton, S.M., Tabley, F., Schwen, A., Beare, M.H. y Brown, H.E. (2014). Root Responses to Alterations in Macroporosity and Penetrability in a Silt Loam Soil. Soil Science Society of America Journal, 78, 1392–1403. doi:10.2136/sssaj2014.01.0005

Hillel, D. (1998). Introduction to soil physics, Academic Press.

Horn, R. (1988). Compressibility of arable land in Impact of water and external forces on soil structure. Selected papers of the 1st Workshop on soilphysics and soilmechanics (pp 53-71). Catena supplement 11.

Horn, R. y Lebert, M. (1994). Soil compactability and compressibility. En: B. D. Soane y C. van Ouwerkerk (Eds.), Developments in agricultural engineering (pp. 45-69). Elsevier. https://doi.org/10.1016/B978-0-444-88286-8.50011-8

Horton, R., Ankeny, M. D. y Allmaras R. R. (1994). Effects of compaction on soil hydraulic properties. En: B.D. Soane y C. van Ouwerkerk (Eds.), Soil compaction in crop production (pp 141-65), Elsevier. https://doi.org/10.1016/B978-0-444-88286-8.50015-5

Hurtado, M. A., Giménez, J. E., Cabral, M. G., Silva, M. M. D., Martinez, O. R., Camilión, M. C., ... Lucesoli, H. (2006). Análisis ambiental del partido de La Plata.

Imhoff, S., Ghiberto, P. J., Grioni, A. y Gay, J. P. (2010). Porosity characterization of Argiudolls under different management systems in the Argentine Flat Pampa. Geoderma, 158(3-4), 268-274. https://doi.org/10.1016/j.geoderma.2010.05.005

Keller, T., Colombi, T., Ruiz, S., Manalili, M.P., Rek, J., Stadelmann, V., Wunderli, H., Breitenstein, D., Reiser, R., Oberholzer, H., Schymanski, S., Romero-Ruiz, A., Linde, N., Weisskopf, P., Walter, A. y Or, D. (2017). Long-Term Soil Structure Observatory for Monitoring Post Compaction Evolution of Soil Structure. Vadose Zone Journal, 16. doi:10.2136/vzj2016.11.0118

Kirkegaard, J. A. (1990). Effect of compaction on the growth of pigeonpea on clay soils. Tesis Doctoral, Universidad de Queensland. https://doi.org/10.14264/uql.2017.587

Lozano, L. A., Soracco, C. G., Cornelis, W. M., Gabriels, D., Sarli, G. O. y Villarreal, R. (2013). Anisotropy of pore size classes’ connectivity related to soil structure under no tillage. Soil Science, 178(11), 612-617. https://doi.org/10.1097/SS.0000000000000027

Marinello, F., Pezzuolo, A., Cillis, D., Chiumenti, A. y Sartori, L. (2017). Traffic effects on soil compaction and sugar beet (Beta vulgaris L.) taproot quality parameters. Spanish Journal of Agricultural Research, 15(1), 11. https://doi.org/10.5424/sjar/2017151-8935

Martínez, I., Chervet, A., Weisskopf, P., Sturny, W.G., Etana, A., Stettler, M., Forkman, J. y Keller, T. (2016). Two decades of no-till in the Oberacker long-term field experiment: Part I . Crop yield, soil organic carbon and nutrient distribution in the soil profile. Soil & Tillage Research, 163, 141–151. doi:10.1016/j.still.2016.05.021

Martiren, V. S., Fonterosa, R. A., Lastra-Bravo, X. B. y Botta, G. F. (2016). Compactación por el tráfico de la maquinaria agrícola: su efecto sobre el esfuerzo cortante del suelo y el rendimiento del cultivo de maíz (Zea mayz L.). Revista Siembra, 3, 021-036.

Mur, M. y Balbuena, R. (2014). Compactación de un suelo argiudol típico por tráfico en un sistema de producción de forrajes. Ciencia del Suelo, 32 (1), 1-12.

Narro-Farias E. (1994). Física de suelos, con enfoque agrícola. Editorial Trillas.

Nocelli, P. S. (2017). Estimación de superficie en siembra directa campaña 2016-2017. AAPRESID. https://www.aapresid.org.ar/

Perroux, K. M. y White, I. (1988). Designs for disc infiltrometers. Soil Science Society of America Journal, 52, 1205-1215.

Raper, R. L. (2005). Agricultural traffic impacts on soil. Journal of Terramechanics, 42(3-4), 259-280. https://doi.org/10.1016/j.jterra.2004.10.010

Rivero, D., Botta, G. F., Antille, D. L., Ezquerra-Canalejo, A., Bienvenido, F. y Ucgul, M. (2022). Tyre Configuration and Axle Load of Front-Wheel Assist and Four-Wheel Drive Tractors Effects on Soil Compaction and Rolling Resistance under No-tillage. Agriculture, 12(11), 1961.

Soil Survey Staff. (2014). Keys to soil taxonomy (12th ed.). USDA Natural Resources Conservation Service.

Sokal, R. R., y Rohlf, F. J. (1995). Biometry: The principles and practices of statistics in biological research (3rd ed.). W.H. Freeman and Company.

Soracco, C. G., Lozano, L. A., Villarreal, R., Palancar, T. C., Collazo, D. J., Sarli, G. O. y Filgueira, R. R. (2015). Effects of compaction due to machinery traffic on soil pore configuration. Revista Brasileira de ciência do solo, 39, 408-415. https://doi.org/10.1590/01000683rbcs20140359

Statsoft. (2004). STATISTICA (Version 7). Statsoft.

Tarawally M. A., Medina H., Frómeta M. E. y Itza C. A. (2004). Field compaction at different soil-water status: effects on pore size distribution and soil water characteristics of a Rhodic Ferralsol in Western Cuba. Soil & Tillage Research, 76, 95-103. https://doi.org/10.1016/j.still.2003.09.003

Threadgill, E. D. (1982). Residual tillage effects as determined by cone index. Transaction of the ASAE, 25(4), 859-863. https://doi.org/ 10.13031/2013.33627

Tolon-Becerra, A., Lastra-Bravo, X. B., Botta G. F., Tourn, M., Linares, P., Ressia, M. y Balbuena, R. (2011). Traffic effect on soil compaction and yields of wheat in Spain. Spanish Journal of Agricultural Research, 9(2), 395-403. https://doi.org/10.5424/sjar/20110902235-10

van Genuchten, M. T. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44, 892– 898. https://doi.org/10.2136/sssaj1980.036159950044 00050002x

van Genuchten, M. T., Leij F. J. y Yates S. R. (1991). The RETC code for quantifying the hydraulic functions of unsaturated soils. Roberts Kerr Environ. Reseach Lab. https://doi.org/10.1002/9781118616871

Watson, K. W. y Luxmoore, R. J. (1986). Estimating macroporosity in a forest watershed by use of a tension infiltrometer. Soil Science Society of America Journal, 50(3), 578-582. https://doi.org/10.2136/sssaj1986.03615995005000030007x

Zhang, S., Grip, H. y Lövdahl L. (2006). Effect of soil compaction on hydraulic properties of two loess soils in China. Soil & Tillage Research, 90,117-25. https://doi.org/10.1016/j.still.2005.08.012

Published

07-07-2023

How to Cite

Bellora, G., Lozano, L. A., Soracco, C. G., Guilino, F., Polich, N., Salazar, M. P., … Palancar, T. (2023). REPEATED TRAFFIC OVER THE SAME TRACK: EFFECT ON THE PHYSICAL PROPERTIES OF A TYPIC ARGIUDOLL. Ciencia Del Suelo, 41(1). Retrieved from https://ojs.suelos.org.ar/index.php/cds/article/view/748

Issue

Section

Física, Química y Físico-química de los Suelos