SUNFLOWER HULLS WITH DIFFERENT TRANSFORMATIONS AS ORGANIC AMENDMENTS IN WHEAT
Keywords:
Organic matter, agroindustrial residues, biotransformation, southwest of Buenos Aires ProvinceAbstract
The biotransformation of agro-industrial organic residues, such as sunflower hulls (Helianthus annuus L.) (CG), can modify its chemical properties and thus favor its use as amendments. The objective of this work is to characterize chemically and spectrometrically the CG subjected to different transformations and to evaluate the effect of its application on the soil and the production of wheat (Triticum aestivum L.). A trial was carried out in pots under controlled conditions of humidity and temperature for 55 days. Different transformations of the CG (composting, use of lignocellulite fungi and mixture with urea) and without modification were evaluated. At each CG treatment, organic matter, total organic carbon, total nitrogen, pH, electrical conductivity were determined and they were characterized by the UV-vis technique from their humic substances. Different doses of the treatments were established according to their amount of organic nitrogen (N) equivalent to: 0, 50, 100 and 150 kg N ha-1. Increases in the dry matter (DM) production of wheat were observed with the application of composted CG in relation to the control, while in the remaining treatments the DM production was not modified or decreased. The effect on DM production clearly responded to differences in quality between treatments, mainly associated with the C:N ratio. The composted CG presented the lowest C:N (22), being the treatment with the highest production of wheat dry matter. A threshold C:N ratio of 38 was established, where lower ratios favor mineralization and higher immobilization. The biotransformation modified the chemical properties of the original material, reducing the C:N ratio and increasing the E2/E4, E4/E6 and E2/E6 ratios. The UV Vis technique provided useful complementary information.
References
Albrecht, R., Petit, J. L., Terrom, G. & Périssol, C. (2011). Comparison between UV spectroscopy and nirs to assess humification process during sewage sludge and green wastes co-composting. Bioresource Technology, 102, 4495-4500.
Alexander, R.A. (1994). Standards and guidelines for compost use. Biocycle, 35 (12): 37-41.
Allison, F.E. (1966). The fate of nitrogen applied to soils. Advances in Agronomy, 18:219-258.
Barbaro, L.A., Karlanian, M.A., Imhoff, S. y Morisigue, D.E. (2011). Caracterización de la turba subtropical del departamento Islas de Ibicuy (Entre Ríos, Argentina). Agriscientia, 28(2): 137-145.Benedicto Valdés, G.S., Montoya García, C.O., Vicente Hernández, Z., Ramírez Ayala, C. y Salvador Escalante Estrada, J.A. (2019). Incorpo¬ración de abonos orgánicos y liberación de C-CO2 como indicador de la mineralización del carbono. Ecosistemas y Recursos Agrope¬cuarios, 6(18):513-522.
Bremner, J.M. (1996). Nitrogen – Total. En: Methods os Soil Analysis, part 3. Ed. Sparks DL, Chemical Methods, 1085-1123.
Brown, S. & Leonard, P. (2004). Building carbon credits with biosolids recycling: Part II. Biocycle, September: 25-29.
Burgess, C. & Thomas, O. (2007). UV-visible Spectrophotometry of Water and Wastewater, 1st ed. Elsevier Science, Boston.
Chen, Y., Gu, B., Leboeuf, E. J., Pan, H. & Dai, S. (2002). Spectroscopic characterization of the structural and functional properties of natural organic matter fractions. Chemosphere, 48, 59-68.
Chen, Y., Senesi, N. & Schnitzer, M. (1977). Information provided on humic substances by E4/E6 ratios. Soil Science Society of America, 41(2): 352-358.
Curvetto, N.R., Figlas, D., Gonzales, R.M. & Delmastro, S. (2005). Mushroom Growers´ Handbook 2: Shiitake Cultivation, published by Mus-hWorld, Seoul, Korea. 127-133.
Di Rienzo, J.A., Casanoves, F., Balzarini, M.G., Gonzalez, L., Tablada, M. y Robledo, C.W. (2013). InfoStat, versión 2013, Grupo InfoStat, FCA. Universidad Nacional de Córdoba (Argentina).
Domeizel, M., Khalil, A. & Prudent, P. (2004). UV spectroscopy: a tool for monitoring humification and for proposing an index of the maturity of compost. Bioresource Technology, 94, 177-184.
Duval, M. E., Martinez, J. M., & Galantini, J. A. (2020). Assessing soil quality indices based on soil organic carbon fractions in different long‐term wheat systems under semiarid conditions. Soil Use and Management, 36 (1), 71-82.
Espinosa Loréns, D. M. C., Fernández, D. A., López, D. M., Ramos, M. C. Y., Correa, O. y Álvarez, C. (2012). Determinación de sustancias húmicas en lixiviados de vertederos de residuos sólidos urbanos. Revista Cubana de Química, XXIV: 175–180.
He, Z., Mao, J., Honeycutt, C. W., Ohno, T., Hunt, J. F. & Cade Menun, B. J. (2009). Characterization of plant-derived water extractable organic matter by multiple spectroscopic techniques. Biology and Fertility of Soils, 45, 609-616.
Heal, O.W., Anderson, J. M. & Swift, M. J. (1997). Plant Litter Quality and Decomposition: An Historical Overview. In: Cadish, G & KE Killer (Eds.). Driven by Nature: Plant Litter Quality and Decomposition. pp. 3-30.
Heymann, K., Mashayekhi, H.& Xing, B. (2005). Spectroscopy analysis of sequentially extracted humic acid from compost. Spectrosco¬py Letters, 38, 293-302.
Hogg, D., Favoino, E., Centemero, M., Caimi, V., Amlinger, F., Devliegher, W., Brinton, W. & Antler, S. (2002). Comparison of compost stan-dards within the EU, North America and Australia. The Waste and Resources Action Programme (WRAP), Oxon.
Iglesias-Jiménez, E., Barral, M. T. y Marhuenda, F.C. (2008). Indicadores de la estabilidad y madurez del compost. En: Moreno, J & R Moral (Eds.). Compostaje. pp. 243-283. Ediciones Mundi-Prensa, Madrid.
Iocoli, G. A., Pieroni, O. I., Gómez, M. A., Alvarez, M. B. & Galantini, J. A. (2017). Rapid characterisation of agro-industrial effluents for environmental fate by UV–visible and infrared spectroscopy from fractions obtained by centrifugation. International Journal of Environ-mental Analytical Chemistry 97 (8), 756-767.
Lasaridi, K. E. (1998). Compost Stability: A Comparative Evaluation of Respirometric Techniques. PhD Thesis, Department of Civil Enginee-ring, University of Leeds, Leeds, UK.
Martínez, JM; JA Galantini; ME Duval; MR Landriscini; RJ García & FM López. 2018. Nitrogen mineralization indicators under semi-arid and semi-humid conditions: influence on wheat yield and nitrogen uptake. Communications in Soil Science and Plant Analysis, 49(15): 1907-1921.
Martínez, J. M., Galantini, J. A., Duval, M. E., López, F. M. y Iglesias, J. O. (2017a.) Ajustes en la estimación de carbono orgánico por el método de calcinación en Molisoles del sudoeste bonaerense. Ciencia del Suelo, 35: 181-187.
Martínez, J. M., Galantini, J. A., Duval, M. E. & López, F. M. (2017b). Tillage effects on labile pools of soil organic nitrogen and relationships with wheat crop in a semi-humid climate: A long-term field study. Soil and Tillage Research, 169: 71-80.
Mulvaney, R. L. (1996). Nitrogen- Inorganic forms.1123-1184. In Methods of Soil Analysis. Part 3. Chemical Methods. (Ed. DL Sparks), SSSA- ASA, Madison, Wl, USA.
Olsen, S. R., Cole, C., Watanabe, F.S. y Dean, L. A. (1954). Estimation of available phosphorus in soilsby extraction with sodium bicarbonate, U.S. Dep. of Agric. Circ. 939.
Peuravuori, J. & Pihlaja, K. (1997). Molecular size distribution and spectroscopic properties of aquatic humic substances. Analytical Che-mistry, 337, 133–149.
Postemsky, P. D., Lucaioli, V. S., Devalis R. , González Matute R., Figlas N. D., Kiehr. M., Cubitto M. A., Marinangeli, P.A. y Curvetto, N.R. (2017a). Pretratamientos de la cáscara de semilla de girasol para su utilización como sustrato de plantas. IV Congreso Internacional Científico y Tecnológico-CONCYT 2017.
Postemsky, P. D., Bidegain, M.A., González-Matute, R., Figlas, N.D., & Cubitto, M.A. (2017b). Pilot-scale bioconversion of rice and sunflower agro-residues into medicinal mushrooms and laccase enzymes through solid-state fermentation with Ganoderma lucidum. BioresourceTechnology 231 (2017) 85–93.
Rajkhowa, D. J., Sarma, A. K., Bhattacharyya, P. N. & Mahanta, K. (2019). Bioconversion of agricultural waste and its efcient utilization in the hilly ecosystem of Northeast India. International Journal of Recycling of Organic Waste in Agriculture, 8, 11–20.
Sainz Rozas, H., Echeverria, H. E. y Angelini, H. (2011). Niveles de carbono orgánico y pH en suelos agrícolas de la región pampeana y extrapampeana argentina. Ciencia del Suelo, 29: 29-37.
Salazar Sosa, E., Beltrán Morales, A., Fortis-Hernández, M., Leos Rodríguez, J. A., Cueto-Wong, J. A., Vázquez Vázquez, C. y Peña Cabriales, J.J. (2003). Mineralización de nitrógeno en el suelo y producción de maíz forrajero con tres sistemas de labranza. Terra Latinoameri¬cana, 21(4), 569-575.
Senesi, N., Mirano, T. M. & Brunetti, G. (1996). Humic-like substances in organic amendments and effects on native soil humic substances. In: A. Piccolo, editor, Humic substances in terrestrial ecosystems. Elsevier, Amsterdam, The Netherlands. p. 531–593.
Senesi, N., Plaza, C., Brunetti, G. & Polo A. (2007). A comparative survey of recent results on humic-like fractions in organic amendments and effects on native soil humic substances. Soil Biology and Biochemistry, 39:1244–1262.
Shirshova, L. T., Ghabbour, E. A. & Davies, G. (2006). Spectroscopic characterization of humic acid fractions isolated from soil using diffe-rent extraction procedures. Geoderma 133: 204-216.
Soil Survey Staff (2010). Keys to Soil Taxonomy, 11th ed. USDA-Natural Resources 22. Conservation Service, Washington, DC.
Sommers, L. E. & Nelson, D. D. W. (1972). Determination of total phosphorus in soil. Soil Science Society of American Proceeding 36:902- 904.
Tian, G., Granato, T. C., Cox, A. E., Pietz, R. I., Carlson, C. R. & Abedin, Jr. Z. (2009). Soil carbon sequestration resulting from long-term appli-cation of biosolids for land reclamation. Journal of Environmental Quality, 38:61-74.
Ukalska Jaruga, A., Bejger, R., Debaene, G. & Smreczak, B. (2021). Characterization of Soil Organic Matter Individual Fractions (Fulvic Acids, Humic Acids, and Humins) by Spectroscopic and Electrochemical Techniques in Agricultural Soils. Agronomy, 11, 1067.
Vigil, M. F. & Kissel, D. E. (1995). Rate of nitrogen mineralized from incorporated crop residues as influenced by temperature. Soil Science Society of America Journal 59: 1636- 1644. En: Moreno, J. y Moral, R. (Eds.). Compostaje. pp.359. Ediciones Mundi-Prensa, Madrid.
Waldrip, M. H., He, Z., Todd, R. W., Hunt, J.F., Rhoades, M. B. & Cole, N. A. (2014). Characterization of Organic Matter in Beef Feedyard Ma-nure by Ultraviolet-Visible and Fourier Transform Infrared Spectroscopies. Journal of Environmental Quality. 43:690–700.
Zambrano, A. J., Contreras, F.A., Paolini, J.E. y Rivero, C. (2011). Caracterización eséctroscópica de enmiendas orgánicas. Avances en Investigación Agropecuaria 15(3): 67-85.
Zbytniewski, R. & Buszewski, B. (2005). Characterization of natural organic matter (NOM) derived from sewage sludge compost. Part 1: chemical and spectroscopic properties. Bioresource Technology, 96, 471–478.