COMUNIDADES MICROBIANAS AFECTADAS POR CAPTAN EN SUELOS BAJO DIFERENTES PRÁCTICAS DE MANEJO

Autores/as

  • Florencia Magalí Barbero Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET-UNC), Instituto de Ciencia y Tecnología de los Alimentos (FCEFyN-UNC), Córdoba, Argentina
  • Romina Aylén Verdenelli Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET)
  • María Florencia Dominchin Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET-UNC), Instituto de Ciencia y Tecnología de los Alimentos (FCEFyN-UNC), Córdoba, Argentina
  • Carolina Pérez-Brandán Estación Experimental Agropecuaria Salta, Instituto Nacional de Tecnología Agropecuaria (INTA EEA Salta), Cerrillos, Salta, Argentina
  • Antonio Aoki Facultad de Ciencias Agropecuarias (UNC), Av. Valparaíso s/n Ciudad Universitaria, CC 509, Córdoba, Argentina
  • Silvina Vargas Gil Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE, CIAP – INTA), Córdoba, Argentina
  • José Manuel Meriles Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET-UNC), Instituto de Ciencia y Tecnología de los Alimentos (FCEFyN-UNC), Córdoba, Argentina

Palabras clave:

estructura de comunidades microbianas, actividad enzimática, abundancia microbiana.

Resumen

La aplicación de fungicidas se ha vuelto un método recurrente en la agricultura moderna. Sin embargo, su frecuente aplicación podría inhibir procesos clave en los agroecosistemas, particularmente en el suelo. Captan es un fungicida de amplio espectro, organoclorado y no sistémico ampliamente utilizado en agricultura. El objetivo del trabajo fue evaluar como distintas dosis del fungicida captan, afectan la microbiota del suelo sometido a diferentes tipos de manejos, y con gradiente de deterioro asociado al contenido de materia orgánica del suelo (MOS). El ensayo se realizó en invernadero e incluyo suelos con tres tipos de manejo: área preservada con bosque nativo (L1), manejo conservacionista (L2) y manejo convencional (L3). Los tratamientos fueron: control (0X), dosis 1.0 mg/kg suelo (1X) y dosis 10 mg/kg suelo (10X).  La toma de muestras se realizó 30 días posteriores a la aplicación de captan. Se evaluaron actividades enzimáticas relacionadas con los ciclos C, N y P, análisis de ácidos grasos fosfolípidos (PLFA) y cuantificación de genes de los ARN ribosomales (16S y 18S) para para evaluar el impacto de captan en la estructura y actividades de las comunidades microbianas. Nuestros resultados mostraron incrementos en las actividades enzimáticas y la biomasa en los suelos L1 y a dosis 1X en relación al control, con excepción de gran-negativas que incrementan a dosis 10X. Sin embargo, la aplicación de dosis 10x produjo perdidas de actividad y la biomasa microbiana en los tres tipos suelos. Los menores valores de copias 16S y 18S ARNr se registraron en los tratamientos con fungicida. El ARNr bacteriano 16S no presentó diferencias entre los tratamientos en los suelos L3.  En conclusión, el suelo L1, presentó mayor sensibilidad en la respuesta a captan en comparación con los suelos bajo manejo agrícola L2 y L3.

Citas

Abbott, C. P. y Beckerman, J. L. (2018). Incorporating adjuvants with captan to manage common apple diseases. Plant Disease, 102(1), 231–236. https://doi.org/10.1094/PDIS-05-17-0629-RE

Adam, G. y Duncan, H. (2001). Development of a sensitive and rapid method for the measurement of total microbial activity using fluorescein diacetate (FDA) in a range of soils. Soil Biology and Biochemistry, 33(7–8), 943–951. https://doi.org/10.1016/S0038-0717(00)00244-3

Baćmaga, M., Wyszkowska, J. y Kucharski, J. (2018). The influence of chlorothalonil on the activity of soil microorganisms and enzymes. Ecotoxicology, 27(9), 1188–1202. https://doi.org/10.1007/s10646-018-1968-7

Baćmaga, M., Wyszkowska, J. y Kucharski, J. (2019). The biochemical activity of soil contaminated with fungicides. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 54(4), 252–262. https://doi.org/10.1080/03601234.2018.1553908

Bailey, G. W. y White, J. L. (1964). Soil-pesticide relationships: Review of Adsorption and Desorption of Organic Pesticides by Soil Colloids, with Implications Concerning Pesticide Bioactivity. Journal of Agricultural and Food Chemistry, 12(4), 324–332. https://doi.org/10.1021/jf60134a007

Bending, G. D., Rodríguez-Cruz, M. S. y Lincoln, S. D. (2007). Fungicide impacts on microbial communities in soils with contrasting management histories. Chemosphere, 69(1), 82–88. https://doi.org/10.1016/j.chemosphere.2007.04.042

Brodie, E., Edwards, S. y Clipson, N. (2003). Soil fungal community structure in a temperate upland grassland soil. FEMS Microbiology Ecology, 45(2), 105–114. https://doi.org/10.1016/S0168-6496(03)00126-0

Burns, R. G., DeForest, J. L., Marxsen, J., Sinsabaugh, R. L., Stromberger, M. E., Wallenstein, M. D., Weintraub, M. N. y Zoppini, A. (2013). Soil enzymes in a changing environment: Current knowledge and future directions. Soil Biology and Biochemistry, 58, 216–234. https://doi.org/10.1016/j.soilbio.2012.11.009

Chen, S. K., Edwards, C. A. y Subler, S. (2001). A microcosm approach for evaluating the effects of the fungicides benomyl and captan on soil ecological processes and plant growth. Applied Soil Ecology, 18(1), 69-82. https://doi.org/10.1016/S0929-1393(01)00135-4

Chiocchio, V. (2000). Effect of the fungicide benomyl on spore germination and hyphal length of the arbuscular mycorrhizal fungus Glomus mosseae. International Microbiology, 3(3), 173–175.

Chowdhury, A., Pradhan, S., Saha, M. y Sanyal, N. (2008). Impact of pesticides on soil microbiological parameters and possible bioremediation strategies. In Indian Journal of Microbiology (Vol. 48, Issue 1, pp. 114–127). https://doi.org/10.1007/s12088-008-0011-8

Coppola, L., Comitini, F., Casucci, C., Milanovic, V., Monaci, E., Marinozzi, M., Taccari, M., Ciani, M. y Vischetti, C. (2011). Fungicides degradation in an organic biomixture: Impact on microbial diversity. New Biotechnology, 29(1), 99–106. https://doi.org/10.1016/j.nbt.2011.03.005

Covacevich, F. y Echeverría, H. E. (2010). Indicadores para seleccionar inóculos de hongos micorrícicos arbusculares eficientes en suelos moderadamente ácidos. Ciencia Del Suelo, 28(1), 9–22.

Cycoń, M., Piotrowska-Seget, Z. y Kozdrój, J. (2010). Responses of indigenous microorganisms to a fungicidal mixture of mancozeb and dimethomorph added to sandy soils. International Biodeterioration and Biodegradation, 64(4), 316–323. https://doi.org/10.1016/j.ibiod.2010.03.006

Di Rienzo, J. A., Casanoves, F., Balzarini, M. G., Gonzalez, l., Tablada, M. y Robledo, C.W. (2017). Infostat - Software estadístico (No. 2017). Grupo infoStat, FCA, Universidad Nacional de Córdoba, Argentina. http://www.infostat.com.ar

Ding, H., Zheng, X., Zhang, J., Zhang, Y., Yu, J. y Chen, D. (2019). Influence of chlorothalonil and carbendazim fungicides on the transformation processes of urea nitrogen and related microbial populations in soil. Environmental Science and Pollution Research, 26(30), 31133–31141. https://doi.org/10.1007/s11356-019-06213-8

Dominchin, M. F., Verdenelli, R. A., Aoki, A. y Meriles, J. M. (2020). Soil microbiological and biochemical changes as a consequence of land management and water erosion in a semiarid environment. Archives of Agronomy and Soil Science, 66(6), 763–777. https://doi.org/10.1080/03650340.2019.1638915

Dominchin, M. F., Verdenelli, R. A., Berger, M. G., Aoki, A. y Meriles, J. M. (2021). Impact of N-fertilization and peanut shell biochar on soil microbial community structure and enzyme activities in a Typic Haplustoll under different management practices. European Journal of Soil Biology, 104, 103298. https://doi.org/10.1016/j.ejsobi.2021.103298

Dominchin, M. F., Verdenelli, R. A., Gil, S. V., Aoki, A., Marin, R. H. y Meriles, J. M. (2019). Effect of poultry biochar on chemical and microbiological properties in a typical haplustol soil under different land-use intensities. Ciencia Del Suelo, 37(2), 315–327.

Ekmekyapar, F. y Deveci, M. (2008). Dissipation of captan in soil and tomato plants in field conditions. Agrochimica, 52(5), 273–284.

El Azhari, N., Dermou, E., Barnard, R. L., Storck, V., Tourna, M., Beguet, J., Karas, P. A., Lucini, L., Rouard, N., Botteri, L., Ferrari, F., Trevisan, M., Karpouzas, D. G. y Martin-Laurent, F. (2018). The dissipation and microbial ecotoxicity of tebuconazole and its transformation products in soil under standard laboratory and simulated winter conditions. Science of the Total Environment, 637–638, 892–906. https://doi.org/10.1016/j.scitotenv.2018.05.088

Epelde, L., Burges, A., Mijangos, I. y Garbisu, C. (2014). Microbial properties and attributes of ecological relevance for soil quality monitoring during a chemical stabilization field study. Applied Soil Ecology, 75, 1–12. https://doi.org/10.1016/j.apsoil.2013.10.003

Fernandes, M. C., Cox, L., Hermosín, M. C. y Cornejo, J. (2006). Organic amendments affecting sorption, leaching and dissipation of fungicides in soils. Pest Management Science: formerly Pesticide Science, 62(12), 1207-1215. https://doi.org/10.1002/ps.1303

Fierer, N. y Jackson, J. (2005). Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Applied and Environmental Microbiology, 71(7), 4117. https://doi.org/10.1128/AEM.71.7.4117

Frasier, I., Noellemeyer, E., Figuerola, E., Erijman, L., Permingeat, H. y Quiroga, A. (2016). High quality residues from cover crops favor changes in microbial community and enhance C and N sequestration. Global Ecology and Conservation, 6, 242–256. https://doi.org/10.1016/j.gecco.2016.03.009

Garbeva, P., Van Veen, J. A. y Van Elsas, J. D. (2004). Microbial diversity in soil: Selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annual Review of Phytopathology, 42(29), 243–270. https://doi.org/10.1146/annurev.phyto.42.012604.135455

Garcia, C., Hernandez, T. y Costa, F. (1997). Potential use of dehydrogenase activity as an index of microbial activity in degraded soils. Communications in Soil Science and Plant Analysis, 28(1–2), 123–134. https://doi.org/10.1080/00103629709369777

Gavrilescu, M. (2005). Fate of pesticides in the environment and its bioremediation. Engineering in Life Sciences, 5(6), 497–526. https://doi.org/10.1002/elsc.200520098

Gill Kaur, H. y Garg, H. (2014). Pesticides: Environmental Impacts and Management Strategies. In Pesticides - Toxic Aspects (pp. 187–230). https://doi.org/10.5772/57399

Gu, L., Bai, Z., Jin, B., Hu, Q., Wang, H., Zhuang, G. y Zhang, H. (2010). Assessing the impact of fungicide enostroburin application on bacterial community in wheat phyllosphere. Journal of Environmental Sciences, 22(1), 134–141. https://doi.org/10.1016/S1001-0742(09)60084-X

Guo, P., Zhu, L., Wang, J. J., Wang, J. J., Xie, H. y Lv, D. (2015). Enzymatic activities and microbial biomass in black soil as affected by azoxystrobin. Environmental Earth Sciences, 74(2), 1353–1361. https://doi.org/10.1007/s12665-015-4126-z

Hai, B., Diallo, N. H., Sall, S., Haesler, F., Schauss, K., Bonzi, M., Assigbetse, K., Chotte, J. L., Munch, J. C. y Schloter, M. (2009). Quantification of key genes steering the microbial nitrogen cycle in the rhizosphere of sorghum cultivars in tropical agroecosystems. Applied and Environmental Microbiology, 75(15), 4993–5000. https://doi.org/10.1128/AEM.02917-08

Hamed, S. M., Okla, M. K., Al-Saadi, L. S., Hozzein, W. N., Mohamed, H. S., Selim, S. y AbdElgawad, H. (2022). Evaluation of the phycoremediation potential of microalgae for captan removal: Comprehensive analysis on toxicity, detoxification and antioxidants modulation. Journal of Hazardous Materials, 427, 128177. https://doi.org/10.1016/j.jhazmat.2021.128177

Hansda, A., Kumar, V. y Usmani, Z. (2014). Phytoremediation of heavy metals contaminated soil using plant growth promoting rhizobacteria (PGPR): A current perspective. Recent Research in Science and Technology, 6(1), 131–134. http://recent-science.com/

Hashimi, M. H., Hashimi, R. y Ryan, Q. (2020). Toxic Effects of Pesticides on Humans, Plants, Animals, Pollinators and Beneficial Organisms. Asian Plant Research Journal, 5(4), 37–47. https://doi.org/10.9734/aprj/2020/v5i430114

Howard, P. H. (2017). Handbook of environmental fate and exposure data: For organic chemicals, volume iii pesticides. In D. A. G. Philip H. Howard, Edward M. Michalenko, William F. Jarvis, Dipak K. Basu, Gloria W. Sage, William M. Meylan, Julie A. Beauman (Ed.), Handbook of Environmental Fate and Exposure Data: For Organic Chemicals, Volume III Pesticides (e-book 201). CRC Press. https://doi.org/10.1201/9780203719305

Ingham, E. R. (1985). Review of the effects of 12 selected biocides on target and non-target soil organisms. Crop Protection, 4(1), 3–32. https://doi.org/10.1016/0261-2194(85)90002-X

Jiang, J., Yang, Y., Wang, L., Cao, S., Long, T. y Liu, R. (2022). Effects of Chlorothalonil Application on the Physio-Biochemical Properties and Microbial Community of a Yellow–Brown Loam Soil. Agriculture (Switzerland), 12(5), 608. https://doi.org/10.3390/agriculture12050608

Kalia, A. y Gosal, S. K. (2011). Effect of pesticide application on soil microorganisms. Archives of Agronomy and Soil Science, 57(6), 569–596. https://doi.org/10.1080/03650341003787582

Kandeler, E. y Gerber, H. (1988). Short-term assay of soil urease activity using colorimetric determination of ammonium. Biology and Fertility of Soils, 6(1), 68–72. https://doi.org/10.1007/BF00257924

Karpouzas, D. G., Tsiamis, G., Trevisan, M., Ferrari, F., Malandain, C., Sibourg, O. y Martin-Laurent, F. (2016). ”LOVE TO HATE” pesticides: felicity or curse for the soil microbial community? An FP7 IAPP Marie Curie project aiming to establish tools for the assessment of the mechanisms controlling the interactions of pesticides with soil microorganisms. Environmental Science and Pollution Research, 23(18), 18947–18951. https://doi.org/10.1007/s11356-016-7319-4

Katsoula, A., Vasileiadis, S., Sapountzi, M. y Karpouzas, D. G. (2020). The response of soil and phyllosphere microbial communities to repeated application of the fungicide iprodione: Accelerated biodegradation or toxicity? FEMS Microbiology Ecology, 96(6), 56. https://doi.org/10.1093/femsec/fiaa056

Kurle, J. E. y Pfleger, F. L. (1996). Management influences on arbuscular mycorrhizal fungal species composition in a corn-soybean rotation. Agronomy Journal, 88(2), 155–161. https://doi.org/10.2134/agronj1996.00021962008800020007x

Lambin, E. F. y Meyfroidt, P. (2010). Land use transitions: Socio-ecological feedback versus socio-economic change. Land Use Policy, 27(2), 108–118. https://doi.org/10.1016/j.landusepol.2009.09.003

Liu, X. Z., Zhang, L. M., Prosser, J. I. y He, J. Z. (2009). Abundance and community structure of sulfate reducing prokaryotes in a paddy soil of southern China under different fertilization regimes. Soil Biology and Biochemistry, 41(4), 687–694. https://doi.org/10.1016/j.soilbio.2009.01.001

Madejón, E., Murillo, J., Moreno, F., López, M., Arrue, J., Alvaro-Fuentes, J. y Cantero, C. (2009). Effect of long-term conservation tillage on soil biochemical properties in Mediterranean Spanish areas. Soil and Tillage Research, 105(1), 55–62. https://doi.org/10.1016/j.still.2009.05.007

Maharjan, M., Sanaullah, M., Razavi, B. S. y Kuzyakov, Y. (2017). Effect of land use and management practices on microbial biomass and enzyme activities in subtropical top-and sub-soils. Applied Soil Ecology, 113, 22–28. https://doi.org/10.1016/j.apsoil.2017.01.008

Malek, M., Ohno, T., Suzuki, H., Kitamura, H., Kuroda, K. y Shimizu, M. (2020). A novel strain of endophytic Streptomyces for the biocontrol of strawberry anthracnose caused by Glomerella cingulata. Microbiological Research, 234(November 2019), 126428. https://doi.org/10.1016/j.micres.2020.126428

Malik, A. A., Dannert, H., Griffiths, R. I., Thomson, B. C. y Gleixner, G. (2015). Rhizosphere bacterial carbon turnover is higher in nucleic acids than membrane lipids: Implications for understanding soil carbon cycling. Frontiers in Microbiology, 6, 268. https://doi.org/10.3389/fmicb.2015.00268

Manlay, R. J., Feller, C. y Swift, M. J. (2007). Historical evolution of soil organic matter concepts and their relationships with the fertility and sustainability of cropping systems. In Agriculture, Ecosystems and Environment (Vol. 119, Issues 3–4, pp. 217–233). https://doi.org/10.1016/j.agee.2006.07.011

Martínez-Toledo, M. V., Salmerón, V., Rodelas, B., Pozo, C. y González-López, J. (1998). Effects of the fungicide Captan on some functional groups of soil microflora. Applied Soil Ecology, 7(3), 245–255. https://doi.org/10.1016/S0929-1393(97)00026-7

May, L. A., Smiley, B. y Schmidt, M. G. (2001). Comparative denaturing gradient gel electrophoresis analysis of fungal communities associated with whole plant corn silage. Canadian Journal of Microbiology, 47(9), 829–841. https://doi.org/10.1139/cjm-47-9-829

Medina, E. (2018). Efectos de los diferentes manejos agronómicos sobre indicadores bioquímicos y microbiológicos de calidad de suelos de viñedos, San Juan, Argentina. Tesis Doctoral, Universidad Nacional de San Juan. URL:https://ri.conicet.gov.ar/bitstream/handle/11336/83839/CONICET_Digital_Nro.39130da2-728d-4c8e-bcdc-aab52394acbc_A.pdf?sequence=2yisAllowed=y

Meena, R. S., Kumar, S., Datta, R., Lal, R., Vijayakumar, V., Brtnicky, M., Sharma, M. P., Yadav, G. S., Jhariya, M. K., Jangir, C. K., Pathan, S. I., Dokulilova, T., Pecina, V. y Marfo, T. D. (2020). Impact of agrochemicals on soil microbiota and management: A review. In Land, 9(2), 34. https://doi.org/10.3390/land9020034

Megadi, V. B., Tallur, P. N., Mulla, S. I. y Ninnekar, H. Z. (2010). Bacterial degradation of fungicide captan. Journal of Agricultural and Food Chemistry, 58(24), 12863–12868. https://doi.org/10.1021/jf1030339

Meriles, J. ., Vargas Gil, S., Conforto, C., Figoni, G., Lovera, E., March, G. y Guzmán, C. (2009). Soil microbial communities under different soybean cropping systems: Characterization of microbial population dynamics, soil microbial activity, microbial biomass, and fatty acid profiles. Soil and Tillage Research, 103(2), 271–281. https://doi.org/10.1016/j.still.2008.10.008

Muñoz-Leoz, B., Ruiz-Romera, E., Antigüedad, I. y Garbisu, C. (2011). Tebuconazole application decreases soil microbial biomass and activity. Soil Biology and Biochemistry, 43(10), 2176–2183. https://doi.org/10.1016/j.soilbio.2011.07.001

Pal, R., Chakrabarti, K., Chakraborty, A. y Chowdhury, A. (2005). Pencycuron application to soils: Degradation and effect on microbiological parameters. Chemosphere, 60(11), 1513–1522. https://doi.org/10.1016/j.chemosphere.2005.02.068

Pan, Y., Wu, Y., Li, X., Zeng, J. y Lin, X. (2019). Continuing Impacts of Selective Inhibition on Bacterial and Fungal Communities in an Agricultural Soil. Microbial Ecology, 78(4), 927–935. https://doi.org/10.1007/s00248-019-01364-0

Papadopoulou, E. S., Genitsaris, S., Omirou, M., Perruchon, C., Stamatopoulou, A., Ioannides, I. y Karpouzas, D. G. (2018). Bioaugmentation of thiabendazole-contaminated soils from a wastewater disposal site: Factors driving the efficacy of this strategy and the diversity of the indigenous soil bacterial community. Environmental Pollution, 233, 16–25. https://doi.org/10.1016/j.envpol.2017.10.021

Pérez-Brandán, C., Huidobro, J., Grümberg, B., Scandiani, M. M., Luque, A. G., Meriles, J. M. y Vargas-Gil, S. (2014). Soybean fungal soil-borne diseases: A parameter for measuring the effect of agricultural intensification on soil health. Canadian Journal of Microbiology, 60(2), 73–84. https://doi.org/10.1139/cjm-2013-0792

Perucci, P. (1992). Enzyme activity and microbial biomass in a field soil amended with municipal refuse. Biology and Fertility of Soils, 14(1), 54–60. https://doi.org/10.1007/BF00336303

Piotrowska-Seget, Z., Engel, R., Nowak, E. y Kozdrój, J. (2008). Successive soil treatment with captan or oxytetracycline affects non-target microorganisms. World Journal of Microbiology and Biotechnology, 24(12), 2843-2848. https://doi.org/10.1007/s11274-008-9815-2

Podio, N. S., Guzmán, C. A. y Meriles, J. M. (2008). Microbial community structure in a silty clay loam soil after fumigation with three broad spectrum fungicides. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 43(4), 333–340. https://doi.org/10.1080/03601230801941675

Prashar, P. y Shah, S. (2016). Impact of Fertilizers and Pesticides on Soil Microflora in Agriculture. In Sustainable Agriculture Reviews (19th ed., pp. 331–361). Springer International Publishing. https://doi.org/10.1007/978-3-319-26777-7_8

Rousk, J., Baath, E., Brookes, P. C., Lauber, C. L., Lozupone, C. A., Caporaso, J. G., Knight, R., Fierer, N., Bååth, E., Brookes, P. C., Lauber, C. L., Lozupone, C. A., Caporaso, J. G., Knight, R. y Fierer, N. (2010). Soil bacterial and fungal communities across a pH gradient in an arable soil. Isme Journal, 4(10), 1340–1351. https://doi.org/10.1038/ismej.2010.58

Rousk, J., Brookes, P. C. y Bååth, E. (2009). Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Applied and Environmental Microbiology, 75(6), 1589–1596. https://doi.org/10.1128/AEM.02775-08

Saha, A., Pipariya, A. y Bhaduri, D. (2016). Enzymatic activities and microbial biomass in peanut field soil as affected by the foliar application of tebuconazole. Environmental Earth Sciences, 75(7), 558. https://doi.org/10.1007/s12665-015-5116-x

Satapute, P., Kamble, M. V., Adhikari, S. S. y Jogaiah, S. (2019). Influence of triazole pesticides on tillage soil microbial populations and metabolic changes. Science of the Total Environment, 651, 2334–2344. https://doi.org/10.1016/j.scitotenv.2018.10.099

Satyavani, G., Chandrasehar, G., Varma, K. K., Goparaju, A., Ayyappan, S., Reddy, P. N. y Murthy, P. B. (2012). Toxicity Assessment of Expired Pesticides to Green Algae Pseudokirchneriella subcapitata . International Scholarly Research Notices, 2012, 1–10. https://doi.org/10.5402/2012/247072

Scariot, F. J., Jahn, L., Delamare, A. P. L. y Echeverrigaray, S. (2017). Necrotic and apoptotic cell death induced by Captan on Saccharomyces cerevisiae. World Journal of Microbiology and Biotechnology, 33(8), 0. https://doi.org/10.1007/s11274-017-2325-3

Serri, D. L., Pérez-Brandan, C., Meriles, J. M., Salvagiotti, F., Bacigaluppo, S., Malmantile, A. y Vargas-Gil, S. (2022). Development of a soil quality index for sequences with different levels of land occupation using soil chemical, physical and microbiological properties. Applied Soil Ecology, 180. https://doi.org/10.1016/j.apsoil.2022.104621

Shao, H. y Zhang, Y. (2017). Non-target effects on soil microbial parameters of the synthetic pesticide carbendazim with the biopesticides cantharidin and norcantharidin. Scientific Reports, 7(1), 1–12. https://doi.org/10.1038/s41598-017-05923-8

Spark, K. M. y Swift, R. S. (2002). Effect of soil composition and dissolved organic matter on pesticide sorption. Science of The Total Environment, 298(1), 147–161. https://doi.org/10.1016/S0048-9697(02)00213-9

Stemmer, M. (2004). Multiple-substrate enzyme assays: A useful approach for profiling enzyme activity in soils?. Soil Biology and Biochemistry, 36(3), 519–527. https://doi.org/10.1016/j.soilbio.2003.11.004

Sułowicz, S. y Piotrowska-Seget, Z. (2016). Response of microbial communities from an apple orchard and grassland soils to the first-time application of the fungicide tetraconazole. Ecotoxicology and Environmental Safety, 124, 193–201. https://doi.org/10.1016/J.ECOENV.2015.10.025

Thoms, C., Gattinger, A., Jacob, M., Thomas, F. M. y Gleixner, G. (2010). Direct and indirect effects of tree diversity drive soil microbial diversity in temperate deciduous forest. Soil Biology and Biochemistry, 42(9), 1558–1565. https://doi.org/10.1016/j.soilbio.2010.05.030

Tortella, G. R., Mella-Herrera, R. A., Sousa, D. Z., Rubilar, O., Acuña, J. J., Briceño, G. y Diez, M. C. (2013). Atrazine dissipation and its impact on the microbial communities and community level physiological profiles in a microcosm simulating the biomixture of on-farm biopurification system. Journal of Hazardous Materials, 260, 459–467. https://doi.org/10.1016/j.jhazmat.2013.05.059

Tortella, G. R., Rubilar, O., Cea, M., Rodríguez-Rodríguez, C., Seguel, A. y Parada, J. (2019). Sorption Parameters of Carbendazim and Iprodione in the Presence of Copper Nanoparticles in Two Different Soils. Journal of Soil Science and Plant Nutrition, 19(3), 469–476. https://doi.org/10.1007/s42729-019-00037-8

Ullah, M. R., Carrillo, Y. y Dijkstra, F. A. (2021). Biocides provide a source of carbon and nitrogen directly to surviving microbes and indirectly through a pulse in microbial necromass. Applied Soil Ecology, 160, 103862. https://doi.org/10.1016/j.apsoil.2020.103862

Vasileiadis, S., Puglisi, E., Papadopoulou, E. S., Pertile, G., Suciu, N., Pappolla, R. A., Tourna, M., Karas, P. A., Papadimitriou, F., Kasiotakis, A., Ipsilanti, N., Ferrarini, A., Sulowicz, S., Fornasier, F., Menkissoglu-Spiroudi, U., Nicol, G. W., Trevisan, M., Karpouzas, D. G., Sułowicz, S., … Karpouzas, D. G. (2018). Blame It on the Metabolite: 3,5-Dichloroaniline Rather than the Parent Compound Is Responsible for the Decreasing Diversity and Function of Soil Microorganisms. Applied and Environmental Microbiology, 84(22), e01536-18. https://doi.org/10.1128/AEM.01536-18

Vázquez, C., Verdenelli, R. A., Merlo, C., Pérez Brandan, C., Kowaljow, E. y Meriles, J. M. (2022). Influence of land-use changes on microbial community structure and diversity in a semiarid region. Land Degradation and Development. https://doi.org/10.1002/ldr.4416

Verdenelli, R. A., Dominchin, M. F., Pérez-Brandan, C., Rovea, A., Vargas-Gil, S. y Meriles, J. M. (2019). Effect of long-term mineral fertilisation on soil microbial abundance, community structure and diversity in a Typic Hapludoll under intensive farming systems. Annals of Applied Biology, 175(3), 363–375. https://doi.org/10.1111/aab.12546

Verdenelli, R. A., Lamarque, A. L. y Meriles, J. M. (2012). Short-term effects of combined iprodione and vermicompost applications on soil microbial community structure. Science of the Total Environment, 414, 210–219. https://doi.org/10.1016/j.scitotenv.2011.10.066

Vergnoux, A., Guiliano, M., Di Rocco, R., Domeizel, M., Théraulaz, F. y Doumenq, P. (2011). Quantitative and mid-infrared changes of humic substances from burned soils. Environmental Research, 111(2), 205–214. https://doi.org/10.1016/j.envres.2010.03.005

Vuyyuru, M., Sandhu, H. S., Mccray, J. M. y Raid, R. N. (2018). Effects of Soil-Applied Fungicides on Sugarcane Root and Shoot Growth , Rhizosphere Microbial Communities , and Nutrient Uptake. Agronomy, 8(223), 1–17. https://doi.org/10.3390/agronomy8100223

Wang, F., Li, X., Zhu, L., Du, Z., Zhang, C., Wang, J. J., Wang, J. J. y Lv, D. (2018). Responses of soil microorganisms and enzymatic activities to azoxystrobin in cambisol. Polish Journal of Environmental Studies, 27(6), 2775–2784. https://doi.org/10.15244/pjoes/81086

Wang, X., Lu, Z., Miller, H., Liu, J., Hou, Z., Liang, S., Zhao, X., Zhang, H. y Borch, T. (2020). Fungicide azoxystrobin induced changes on the soil microbiome. Applied Soil Ecology, 145, 103343. https://doi.org/10.1016/j.apsoil.2019.08.005

Wang, X., Song, M., Gao, C., Dong, B., Zhang, Q., Fang, H. y Yu, Y. (2009). Carbendazim induces a temporary change in soil bacterial community structure. Journal of Environmental Sciences, 21(12), 1679–1683. https://doi.org/10.1016/S1001-0742(08)62473-0

Wightwick, A. M., Reichman, S. M., Menzies, N. W. y Allinson, G. (2013). The Effects of Copper Hydroxide, Captan and Trifloxystrobin Fungicides on Soil Phosphomonoesterase and Urease Activity. Water, Air, y Soil Pollution, 224(12). https://doi.org/10.1007/s11270-013-1703-1

Wu, X., Xu, J., Dong, F., Liu, X. y Zheng, Y. (2014). Responses of soil microbial community to different concentration of fomesafen. Journal of Hazardous Materials, 273, 155–164. https://doi.org/10.1016/j.jhazmat.2014.03.041

Yan, H., Wang, D., Dong, B., Tang, F., Wang, B., Fang, H. y Yu, Y. (2011). Dissipation of carbendazim and chloramphenicol alone and in combination and their effects on soil fungal:Bacterial ratios and soil enzyme activities. Chemosphere, 84(5), 634–641. https://doi.org/10.1016/j.chemosphere.2011.03.038

Ye, X., Dong, F. y Lei, X. (2018). Microbial Resources and Ecology - Microbial Degradation of Pesticides. Natural Resources Conservation and Research, 1(1), 22–28. https://doi.org/10.24294/nrcr.v1i1.242

Zhang, C., Zhou, T., Zhu, L., Du, Z., Li, B., Wang, J., Wang, J. y Sun, Y. (2019). Using enzyme activities and soil microbial diversity to understand the effects of fluoxastrobin on microorganisms in fluvo-aquic soil. Science of the Total Environment, 666, 89–93. https://doi.org/10.1016/j.scitotenv.2019.02.240

Zhang, M., Teng, Y., Zhang, Y., Ford, R. y Xu, Z. (2017). Effects of nitrification inhibitor 3,4-dimethylpyrazole phosphate and fungicide iprodione on soil fungal biomass and community: based on internal transcribed spacer region. Journal of Soils and Sediments, 17(4), 1021–1029. https://doi.org/10.1007/s11368-016-1644-6

Zhang, M., Wang, W., Zhang, Y., Teng, Y. y Xu, Z. (2017). Effects of fungicide iprodione and nitrification inhibitor 3, 4-dimethylpyrazole phosphate on soil enzyme and bacterial properties. Science of the Total Environment, 599–600, 254–263. https://doi.org/10.1016/j.scitotenv.2017.05.011

Descargas

Publicado

07-07-2023

Cómo citar

Barbero , F. M., Verdenelli, R. A., Dominchin , M. F. ., Pérez-Brandán, C. ., Aoki, A. ., Vargas Gil, S. ., & Meriles, J. M. . (2023). COMUNIDADES MICROBIANAS AFECTADAS POR CAPTAN EN SUELOS BAJO DIFERENTES PRÁCTICAS DE MANEJO. Ciencia Del Suelo, 41(1). Recuperado a partir de https://ojs.suelos.org.ar/index.php/cds/article/view/755

Número

Sección

Biología del Suelo