LAS RAICES DE CULTIVOS DE COBERTURA MEJORAN LA AGREGACIÓN Y EL CARBONO ORGANICO DEL SUELO
DOI:
https://doi.org/10.64132/cds.v43i1.913Palabras clave:
glomalinas, carbono particulado, agroecosistemas, sustentabilidadResumen
El objetivo del trabajo fue cuantificar la biomasa de raíces de diferentes especies de cultivos de cobertura (gramíneas, leguminosas y crucíferas) y establecer relaciones con las reservas de carbono orgánico del suelo (COS), el carbono orgánico particulado (COP), la estabilidad de agregados (EE) y la concentración de proteínas “tipo glomalina”. El estudio se desarrolló en un ensayo de larga duración, ubicado en INTA Pergamino, luego de 10 años de rotar soja-maíz con cultivos de cobertura bajo siembra directa, con y sin fertilización nitrogenada aplicada al maíz. Además, se incluyó un control sin cultivo de cobertura. El diseño experimental fue en bloques con parcelas divididas y tres repeticiones. Se cuantificó la biomasa aérea y de raíces de los cultivos de cobertura, el COS, COP, EE y la concentración de proteínas tipo glomalina a 0-5, 5-10 y 10-20 cm. Los resultados mostraron que la biomasa aérea producida por avena-vicia y vicia (4260,0 kg ha-1) fue superior al resto de los tratamientos. La biomasa de raíces fue mayor en avena-vicia (1852,7 kg ha-1) respecto de avena (1427,7 kg ha-1) y de vicia (1516,7 kg ha-1). El resto de los cultivos de cobertura presentaron producciones intermedias. El 48 a 56% de la biomasa de raíces estuvo estratificada en los primeros 5 cm de suelo. Las raíces de los cultivos de cobertura explicaron los aumentos observados en el COP, el COS y la EE. Además, se comprobaron relaciones lineales entre las glomalinas, la EE y el COS en los primeros 0-5 cm de suelo. Estos resultados demuestran la importancia de diversificar los agroecosistemas simplificados con cultivos de cobertura con la finalidad de restaurar funciones y procesos del suelo claves para asegurar la sostenibilidad de los sistemas agrícolas.
Citas
Beidler, K. V., Benson, M. C., Craig, M. E., Oh, Y. y Phillips, R. P. (2023). Effects of root litter traits on soil organic matter dynamics depend on decay stage and root branching order. Soil Biology and Biochemistry 180, 109008. https://doi.org/10.1016/j.soilbio.2023.109008
Böhm, W. (1979). Methods of Studying Root Systems. Springer Berlin Heidelberg, Berlin, Heidelberg.
Burke, W., Gabriels, D. y Bouma, J. (1986). Soil structure assessment. AA Balkema, Rotterdam.
Cambardella, C.A. y Elliott, E.T. (1992). Particulate Soil Organic-Matter Changes across a Grassland Cultivation Sequence. Soil Science Society of America Journal, 56(3), 777. https://doi.org/10.2136/sssaj1992.03615995005600030017x
Chen, G. y Weil, R.R. 2010. Penetration of cover crop roots through compacted soils. Plant and Soil, 331(1), 31–43. https://doi.org/10.1007/s11104-009-0223-7
Couëdel, A., Alletto, L., Kirkegaard, J. y Justes É. (2018). Crucifer glucosinolate production in legume-crucifer cover crop mixtures. European Journal of Agronomy, 96, 22–33. https://doi.org/10.1016/j.eja.2018.02.007
Couëdel, A., Kirkegaard, J., Alletto, L. y Justes, É. (2019). Crucifer-legume cover crop mixtures for biocontrol: Toward a new multi-service paradigm. Advances in Agronomy, 157, 55–139. https://doi.org/10.1016/bs.agron.2019.05.0031
Daryanto, S., Wang, L. y Jacinthe, P.A. (2020). No-till is challenged: Complementary management is crucial to improve its environmental benefits under a changing climate. Geography and Sustainability, 1(3), 229–232. https://doi.org/10.1016/j.geosus.2020.09.003
Dean, J.E. y Weil, R.R. (2009). Brassica Cover Crops for Nitrogen Retention in the Mid‐Atlantic Coastal Plain. Journal of Environmental Quality, 38(2), 520–528. https://doi.org/10.2134/jeq2008.0066
Denef, K. y Six, J. (2006). Contributions of incorporated residue and living roots to aggregate-associated and microbial carbon in two soils with different clay mineralogy. European Journal of Soil Science, 57(6), 774–786. https://doi.org/10.1111/j.1365-2389.2005.00762.x
Di Rienzo, J. A., Casanoves, F., Balzarini, M. G., Gonzalez, L., Tablada, M. y Robledo, C. (2020). Grupo InfoStat. FCA, Universidad Nacional de Córdoba, Argentina.
dos Reis Martins, M., and D.A. Angers. (2015). Different plant types for different soil ecosystem services. Geoderma, 237, 266–269. https://doi.org/10.1016/j.geoderma.2014.09.013
Dos Santos, N. Z., Dieckow, J., Bayer, C., Molin, R., Favaretto, N., Pauletti, V. y Pivaet, J. T. (2011). Forages, cover crops and related shoot and root additions in no-till rotations to C sequestration in a subtropical Ferralsol. Soil Tillage Research, 111(2), 208–218. http://doi.org/10.1016/j.still.2010.10.006
Douglas, J. T. y Goss, M. J. (1982). Stability and organic matter content of surface soil aggregates under different methods of cultivation and in grassland. Soil Tillage Research, 2(2), 155–175. https://doi.org/10.1016/0167-1987(82)90023-X
Duval, M. E., Galantini, J. A., Capurro, J. E. y Martinez, J. M. (2016). Winter cover crops in soybean monoculture: Effects on soil organic carbon and its fractions. Soil Tillage Research, 161, 95–105. http://dx.doi.org/10.1016/j.still.2016.04.006
Enrico, J. M., Piccinetti, C. F., Barraco, M., Agosti, M. B., Eclesia, R. P. y Salvagiotti, F. (2020). Biological nitrogen fixation in field pea and vetch: Response to inoculation and residual effect on maize in the Pampean region. European Journal of Agronomy, 115, 1–10. https://doi.org/10.1016/j.eja.2020.126016
Feller, C. (1979). Une méthode de fractionnement granulométrique de la matière organique du soil. Application aux sols tropicaux à textures grossières, très pauvres en humus. Cahiers ORSTOM série Pédologie, Paris, 17, 339-346.
Fokom, R., Adamou, S., Teugwa, M. C., Begoude Boyogueno, A. D., Nana, W. L., Ngonkeu, M. E. L., Tchameni, N. S., Nwaga D., Tsala Ndzomo, G. y Amvam Zollo, P. H. (2012). Glomalin related soil protein, carbon, nitrogen and soil aggregate stability as affected by land use variation in the humid forest zone of south Cameroon. Soil Tillage Research, 120, 69–75. http://dx.doi.org/10.1016/j.still.2011.11.004
Frasier, I., Barbero, F. M., Pérez-Brandan, C., Gómez, M. F., Fernández, R., Quiroga, A. R., Posse-Beaulieu, G., Restovich, S., Meriles, J., Serri, D. L., Figuerola, E. L. M., Noellemeyer, E. y Vargas-Gil, S. (2024). Roots are the key for soil C restoration: A comparison of land management in the semiarid Argentinean Pampa. Soil Tillage Research, 235, 105918. https://doi.org/10.1016/j.still.2023.105918
Frasier, I., Noellemeyer, I., Amiotti, N. y Quiroga, A. R. (2017). Vetch-rye biculture is a sustainable alternative for enhanced nitrogen availability and low leaching losses in a no-till cover crop system. Field Crops Research, 214, 104–112. https://doi.org/10.1016/j.fcr.2017.08.016
Frasier, I., Quiroga, A. R., Fernández, R., Álvarez, C., Gómez, M. F., Scherger, E., Gilli, A. y Noellemeyer, E. (2019). Soil type, land-use and -management as drivers of root-C inputs and soil C storage in the semiarid pampa region, Argentina. Soil Tillage Research, 192, 134–143. https://doi.org/10.1016/j.still.2019.05.010
Frasier, I., Quiroga, A. R. y Noellemeyer, E. (2016). Effect of different cover crops on C and N cycling in sorghum NT systems. Science of the Total Environment, 562, 628–639. http://dx.doi.org/10.1016/j.scitotenv.2016.04.058
Gale, W. y Cambardella, C. (2000). Carbon dynamics of surface residue–and root-derived organic matter under simulated no-till. Soil Science Society of America, 64(1), 190–195. https://doi.org/10.2136/sssaj2000.641190x
Giacomini, S.J., Aita, C. y Vendruscolo, E. R. O. (2003). Materia seca, relaÇÃo C/N e acúmulo de nitrogênio, fósforo e potássio em misturas de plantas de cobertura do solo. Revista Brasileira de Ciencia do Solo, 27, 325–334. https://doi.org/10.1590/S0100-06832003000200012
Gieske, M. F., Ackroyd, V. J., Baas, D. G., Mutch, D. R., Wyse, D. L., Durganet, B. R. (2016). Brassica cover crop effects on nitrogen availability and oat and corn yield. Agronomy Journal, 108(1), 151–161. https://doi.org/10.2134/agronj2015.0119
Gómez, M. F., Noellemeyer, E. y Frasier, I. (2020). Dinámica de raíces y actividad biológica en secuencias de cultivos en dos tipos de suelo de la región semiárida central. Ciencia del Suelo, 38(1), 56-71. http://orcid.org/0000-0002-6979-8933
Gregorich, E., Janzen, H. H., Helgason, B. y Ellert, B. (2015). Chapter Two – Nitrogenous Gas Emissions from Soils and Greenhouse Gas Effects. Advances in Agronomy, 132, 39–74. https://doi.org/10.1016/bs.agron.2015.02.004
Griffiths, M., Delory, B. M., Jawahir, V., Wong, K. M., Bagnall, G. C., Dowd, T. G., Nusinow, D. A., Miller, A. J. y Topp, C. (2022). Optimisation of root traits to provide enhanced ecosystem services in agricultural systems: A focus on cover crops. Plant, Cell and Environment, 45(3), 751–770. https://doi.org/10.1111/pce.14247
Herrera, J. M. y Stamp, P. (2015). Nitrogen Management Effects on Root Systems: A Synthesis and Future Needs. En D. Timlin, y L. R. Ahuja (Eds.) Enhancing Understanding and Quantification of Soil-Root Growth Interactions, 4, 67–91. https://doi.org/10.2134/advagricsystmodel4.c4
Heuermann, D., Gentsch, N., Boy, J., Schweneker, D., Feuerstein, U., Groß, J., Bauer, B., Guggenberger, G. y vonWirén, N. (2019). Interspecific competition among catch crops modifies vertical root biomass distribution and nitrate scavenging in soils. Nature Research, Scientific Reports, 9(1), 11531. https://doi.org/10.1038/s41598-019-48060-0
Holátko, J., Brtnický, M., Kučerík, J., Kotianová, M., Elbl, J., Kintl, A., Kynický, J., Benada, O., Datta, R. y Jansa, J. (2021). Glomalin – Truths, myths, and the future of this elusive soil glycoprotein. Soil Biology and Biochemistry, 153, 108116. https://doi.org/10.1016/j.soilbio.2020.108116
Hu, J., Du, M., Chen, J., Tie, L., Zhou, S., Buckeridge, K. M., Cornelissen, J. H. C., Huang, C. y Kuzyakov, Y. (2023). Microbial necromass under global change and implications for soil organic matter. Global Change Biology, 29(12), 3503–3515. https://doi.org/10.1111/gcb.16676
Jackson, R.B., Lajtha, K., Crow, S.E., Hugelius, G., Kramer, M. G. y Piñeiro, G. (2017). The ecology of soil carbon: pools, vulnerabilities, and biotic and abiotic controls. Annual Review of Ecology, Evolution and Systematics, 48, 419–445. https://doi.org/10.1146/annurev-ecolsys-112414-054234
Jastrow, J. D., Amonette, J. E. y Bailey, V. L. (2007). Mechanisms controlling soil carbon turnover and their potential application for enhancing carbon sequestration. Climatic Change, 80(1–2), 5–23. https://doi.org/10.1007/s10584-006-9178-3
Jastrow, J. D., Miller, R. M. y Lussenhop, J. (1998). Contributions of interacting biological mechanisms to soil aggregate stabilization in restored prairie. Soil Biology and Biochemistry, 30(7), 905–916. https://doi.org/10.1016/S0038-0717(97)00207-1
Jeewani, P.H., Luo, Y., Yu, G., Fu, Y., He, X., Van Zwieten, L., Liang, C., Kumar, A., He. Y., Kuzyakov, Y., Qin, H., Guggenberger G. y Xu, J. (2021). Arbuscular mycorrhizal fungi and goethite promote carbon sequestration via hyphal-aggregate mineral interactions. Soil Biology and Biochemistry, 162, 108417. https://doi.org/10.1016/j.soilbio.2021.108417
Jin, K., White, P. J., Whalley, W. R., Shen, J. y Shi, L. (2017). Shaping an Optimal Soil by Root–Soil Interaction. Trends in Plant Science, 22(10), 823–829. https://doi.org/10.1016/j.tplants.2017.07.008
Jones, D. L., Nguyen, C. y Finlay, R.D. (2009). Carbon flow in the rhizosphere: carbon trading at the soil–root interface. Plant and Soil, 321(1–2), 5–33. https://doi.org/10.1007/s11104-009-9925-0
Kätterer, T., Bolinder, M. A., Andrén, O., Kirchmann, H. y Menichetti, L. (2011). Roots contribute more to refractory soil organic matter than above-ground crop residues, as revealed by a long-term field experiment. Agriculture, Ecosystems & Environment, 141(1–2), 184–192. https://doi.org/10.1016/j.agee.2011.02.029
Khan, S.A., Mulvaney, R. L., Ellsworth, T. R. y Boast, C. W. (2007). The Myth of Nitrogen Fertilization for Soil Carbon Sequestration. Journal of Environmental Quality, 36(6), 1821–1832. https://doi.org/10.2134/jeq2007.0099
Kirschbaum, M. U. F., Moinet, G. Y. K., Hedley, C. B., Beare, M. H. y McNally, S. R. (2020). A conceptual model of carbon stabilisation based on patterns observed in different soils. Soil Biology and Biochemistry, 141, 107683. https://doi.org/10.1016/j.soilbio.2019.107683
Kong, A. Y. Y. y Six, J. (2010). Tracing Root vs. Residue Carbon into Soils from Conventional and Alternative Cropping Systems. Soil Science Society of America Journal, 74(4), 1201–1210. https://doi.org/10.2136/sssaj2009.0346
Kudoyarova, G. R., Dodd, I. C., Veselov, D. S., Rothwell, S. A. y Veselov, S. Y. (2015). Common and specific responses to availability of mineral nutrients and water. Journal of Experimental Botany, 66(8), 2133–2144. https://doi.org/10.1093/jxb/erv017
Lal, R. (2004). Soil carbon sequestration to mitigate climate change. Geoderma, 123(1–2), 1–22. https://doi.org/10.1016/j.geoderma.2004.01.032
Lehmann, J. y Kleber, M. (2015). The contentious nature of soil organic matter. Nature, 528(7580), 1–9. https://doi.org/10.1038/nature16069
Li, J., Zhang, X., Luo, J., Lindsey, S., Zhou, F., Xie, H., Li, Y., Zhu, P., Wang, L., Shi, Y., He, H. y Zhang, X. (2020). Differential accumulation of microbial necromass and plant lignin in synthetic versus organic fertilizer-amended soil. Soil Biology and Biochemistry, 149, 107967. https://doi.org/10.1016/j.soilbio.2020.107967
Liang, C., Amelung, W., Lehmann, J. y Kästner, M. (2019). Quantitative assessment of microbial necromass contribution to soil organic matter. Global Change Biology, 25(11), 3578–3590. https://doi.org/10.1111/gcb.14781
Liang, C., Schimel, J. P. y Jastrow, J. D. (2017). The importance of anabolism in microbial control over soil carbon storage. Nature Microbiology, 2, 17105. https://doi.org/10.1038/nmicrobiol.2017.105
Meza, K., Vanek, S.J., Sueldo, Y., Olivera, E., Ccanto, R., Scurrah, M. y Fonte, S. J. (2022). Grass–Legume Mixtures show potential to Increase above-and belowground biomass production for Andean Forage-Based Fallows. Agronomy, 12(1), 142. https://doi.org/10.3390/agronomy12010142
Mukumbareza, C., Muchaonyerwa, P. y Chiduza, C. (2016). Bicultures of oat (Avena sativa L.) and grazing vetch (Vicia dasycarpa L.) cover crops increase contents of carbon pools and activities of selected enzymes in a loam soil under warm temperate conditions. Soil Science and Plant Nutrition, 62(5–6), 447–455. https://doi.org/10.1080/00380768.2016.1206833
Nazir, M. J., Li, G., Nazir, M. M., Zulfiqar, F., Siddique, K. H. M., Iqbal, B. y Du, D. (2024). Harnessing soil carbon sequestration to address climate change challenges in agriculture. Soil Tillage Research, 237, 105959. https://doi.org/10.1016/j.still.2023.105959
Nelson, D. W. y Sommers, L. E. (1982). Total carbon, organic carbon and organic matter. En A. Page, R. H. Miller y D. R. Keeney, , (Eds.) Methods of soils analysis, part II (pp 539-577). A merican Society of Agronomy, Soil Science Society of America.
Nieder, R., y Benbi, D. K. (2008). Organic Matter and Soil quality. En R. Nieder, R. y D. K. Benbi, (Eds.) Carbon and Nitrogen in the terrestrial Environment. Springer Science & Business media B.V. (pp 113-135). https://doi.org/10.1007/978-1-4020-8433-1_4
Oderiz, A., Uhaldegaray, M., Frasier, I., Quiroga, A. R., Amiotti, N. y Zalba, P. (2017). Raíces de cultivos de cobertura: cantidad, distribución e influencia sobre el N mineral. Ciencia del Suelo, 35(2), 249–258. https://www.ojs.suelos.org.ar/index.php/cds/article/view/305
Ogle, S.M., Swan, A. y Paustian, K. (2012). No-till management impacts on crop productivity, carbon input and soil carbon sequestration. Agriculture, Ecosystems & Environment, 149, 37–49. https://doi.org/10.1016/j.agee.2011.12.010
Oldroyd, G. E. D. y Leyser, O. (2020). A plant’s diet, surviving in a variable nutrient environment. Science, 368(6486), eaba0196. https://doi.org/10.1126/science.aba0196
Pausch, J. y Kuzyakov, Y. (2018). Carbon input by roots into the soil: Quantification of rhizodeposition from root to ecosystem scale. Global Change Biology, 24(1), 1–12. https://doi.org/10.1111/gcb.13850
Poeplau, C. y Don, A. (2015). Carbon sequestration in agricultural soils via cultivation of cover crops - A meta-analysis. Agriculture, Ecosystems & Environments, 200, 33–41. http://dx.doi.org/10.1016/j.agee.2014.10.024
Poeplau, C., A. Don, and F. Schneider. (2021). Roots are key to increasing the mean residence time of organic carbon entering temperate agricultural soils. Global Change Biology, 27(19), 4921–4934. https://doi.org/10.1111/gcb.15787
Poeplau, C., Don, A., Six, J., Kaiser, M., Benbi, D., Chenu, D., Cotrufo, M. F., Derrien, D., Gioacchini, P., Grand, S., Gregorich. D., Griepentrog, M., Gunina, A., Haddix, M., Kuzyakov, Y., Kühnel, A., Macdonald, L. M., Soong, J., Trigalet, S., Vermeire, M. L., …, Nieder, R. (2018). Isolating organic carbon fractions with varying turnover rates in temperate agricultural soils – A comprehensive method comparison. Soil Biolology and Biochemistry, 125, 10-26. https://doi.org/10.1016/j.soilbio.2018.06.025
Poirier, V., Roumet, C. y Munson, A. D. (2018). The root of the matter: Linking root traits and soil organic matter stabilization processes. Soil Biology and Biochemistry, 120, 246–259. https://doi.org/10.1016/j.soilbio.2018.02.016
Puget, P. y Drinkwater, L. E. E. (2001). Short-term dynamics of root- and shoot-derived carbon from a Leguminous Green Manure. Soil Science Society of America Journal, 65(3), 771–779. https://doi.org/10.2136/sssaj2001.653771x
Rampo, M., Gómez, M. F., Barraco, M., Lobos, M., Miranda, W., Girón, P., Álvarez, C. y Frasier, I. (2019). Efecto de la inclusión de centeno como cultivo de cobertura sobre la dinámica de residuos aéreos y raíces en secuencias con soja. Actas VI Congreso nacional de ecología y biología de suelos (pp. 234-238), 15 al 19 de septiembre de 2019, Puerto Iguazú, Misiones.
Rasse, D. P., Rumpel, C. y Dignac, M. F. (2005). Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant and Soil, 269(1–2), 341–356. https://doi.org/10.1007/s11104-004-0907-y
Reiss, E. R. y Drinkwater, L. E. (2018). Cultivar mixtures: A meta-analysis of the effect of intraspecific diversity on crop yield. Ecological Applications, 28(1), 62–77. https://doi.org/10.1002/eap.1629
Reiss, E. R. y Drinkwater, L. E. (2022). Promoting enhanced ecosystem services from cover crops using intra- and interspecific diversity. Agriculture, Ecosystems, & Environment, 323, 107583. https://doi.org/10.1016/j.agee.2021.107586
Restovich, S. B., Andriulo, A. E., Armas-Herrera, C. M., Beribe, M. J. y Portela, S. I. 2019. Combining cover crops and low nitrogen fertilization improves soil supporting functions. Plant and Soil, 442, 401–417. http://doi.org/10.1007/s11104-019-04205-8
Restovich, S. B., Andriulo, A. E. y Portela, S. I. 2012. Introduction of cover crops in a maize–soybean rotation of the Humid Pampas: Effect on nitrogen and water dynamics. Field Crops Research, 128, 62–70. http://dx.doi.org/10.1016/j.fcr.2011.12.012
Restovich, S. B., Andriulo, A. E. y Portela, S. I. (2022). Cover crop mixtures increase ecosystem multifunctionality in summer crop rotations with low N fertilization. Agronomy for Sustainable Development, 42(2), 19. https://doi.org/10.1007/s13593-021-00750-8
Rillig, M. C., Muller, L. A. H. y Lehmann, A. (2017). Soil aggregates as massively concurrent evolutionary incubators. ISME Journal, 11(9), 1943–1948. https://doi.org/10.1038/ismej.2017.56
Rillig, M. C. y Mummey, D. L. (2006). Mycorrhizas and soil structure. New Phytologist, 171, 41–53. http://doi.org/10.1111/j.1469-8137.2006.01750.x
Rillig, M. C., Wright, S. F. y Eviner, V. T. (2002). The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: comparing effects of five plant species. Plant and Soil, 238, 325–333. http://doi.org/10.1023/a:1014483303813
Ritchie, S. W., Hanway, J. J. y Benson, G. O. (1982). How a corn plant develops. Lowa State University of Science and Technology. Cooperative extension service Ames, lowa. Special report 48.
Sainju, U. M., Whitehead, W. F. y Singh, B.P. (2005). Biculture Legume–Cereal Cover Crops for Enhanced Biomass Yield and Carbon and Nitrogen. Agronomy Journal, 97, 1403–1412. http://doi.org/10.2134/agronj2004.0274
Schmidt, M. W. I., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I. A., Kleber, M., Kögel-Knabner, I., Lehmann, J., Manning, D. A. C., Nannipieri, P., Rasse, D. P., Weiner, S. y Trumbore, S. E. (2011). Persistence of soil organic matter as an ecosystem property. Nature, 478(7367), 49–56. https://doi.org/10.1038/nature10386
Shahzad, T., Chenu, C., Genet, P., Barot, S., Perveen, N., Mougin, C. y Fontaine, S. (2015). Contribution of exudates, arbuscular mycorrhizal fungi and litter depositions to the rhizosphere priming effect induced by grassland species. Soil Biology and Biochemistry, 80, 146–155. https://doi.org/10.1016/j.soilbio.2014.09.023
Six, J. (2004). A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Research, 79(1), 7–31. http://doi.org/10.1016/j.still.2004.03.008
Six, J., y Paustian, K. (2014). Aggregate-associated soil organic matter as an ecosystem property and a measurement tool. Soil Biology and Biochemistry, 68, A4-A9. http://dx.doi.org/10.1016/j.soilbio.2013.06.014
Six, J., Conant, R. T., Paul, E. A., y Paustian, K. (2002). Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant and Soil, 241, 155–176. https://doi.org/10.1023/A:1016125726789.
Six, J., Doetterl, S., Laub, M., Müller, C.R. y Van de Broek, M. (2024). The six rights of how and when to test for soil C saturation. SOIL 10, 275–279. https://doi.org/10.5194/soil-10-275-2024.
Smith, F.A. (2007). Plant roots. Growth, activity and interaction with soils. Annals of Botany, 100(1), 151–152. https://doi.org/10.1093/aob/mcm099
Soil Survey Staff. (2012). Keys to Soil Taxonomy. 12th ed. USDA NRCS.
Sokol, N. W., Sanderman, J. y Bradford, M. A. (2019). Pathways of mineral‐associated soil organic matter formation: Integrating the role of plant carbon source, chemistry, and point of entry. Global Change Biology, 25(1), 12–24. https://doi.org/10.1111/gcb.14482
Stewart, C. E., Plante, A.F., Paustian, K., Conant, R. T. y Six, J. (2008). Soil Carbon Saturation: Linking Concept and Measurable Carbon Pools. Soil Science Society of America Journal, 72(2), 379. https://doi.org/10.2136/sssaj2007.0104
Stockmann, U., Adams, M. A., Crawford, J. W., Field, D. J., Henakaarchchi, N., Jenkins, M., Minasny, B., McBratney, A. B., de Remy de Courcelles, V., Singh, K., Wheeler, I., Abbott, L., Angers, D. A., Baldock, J., Bird, M. B., Bookes, P. C., Chenu, C., Jastrow, J. D., Lal, R., Lehmann, J., …, Zimmermannet, M. (2013). The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agriculture, Ecosystems & Environment, 164(2013), 80–99. http://dx.doi.org/10.1016/j.agee.2012.10.001
Tiemann, L. K., Grandy, A. S., Atkinson, A. A., Marin-Spiotta, E. y Mcdaniel, M. D. (2015). Crop rotational diversity enhances belowground communities and functions in an agroecosystem. Ecology Letters, 18(8), 761–771. https://doi.org/10.1111/ele.12453
Wander, M. (2004). Soil organic matter fractions and their relevance to soil function. In: Magdoff, F. y Weil, R. (Eds), Soil organic matter in sustainable agriculture. (pp. 67–102). CRC Press, Inc.
Weng, Z., Lehmann, J., Van Zwieten, L., Joseph, S., Archanjo, B. S., Cowie, B., Thomsen, L., Tobin, M. J., Vongsvivut, J., Klein, A., Doolette, C. L., Hou, H., Mueller, C. W., Lombi, E. y Kopittke, P. M. (2021). Probing the nature of soil organic matter. Critical Reviews in Environmental Science and Technology, 52(22), 1–22. https://doi.org/10.1080/10643389.2021.1980346
Witzgall, K., Vidal, A., Schubert, D. I., Höschen, C., Schweizer, S. A., Buegger, F., Pouteau, V., Chenu, C. y Mueller, C. W. (2021). Particulate organic matter as a functional soil component for persistent soil organic carbon. Nature Communications, 12(1), 4115. https://doi.org/10.1038/s41467-021-24192-8
Wright, S. F. y Upadhyaya, A. (1996). Extraction of an abundant an unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi. Soil Science, 161(9), 575–586. https://doi.org/10.1097/00010694-199609000-00003.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Ileana Frasier, Silvina Restovich

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.