EVALUACIÓN DEL ESTADO ESTRUCTURAL DEL SUELO EN SISTEMAS AGRÍCOLA-PASTORILES

Autores/as

DOI:

https://doi.org/10.64132/cds.v43i1.896

Palabras clave:

porosidad, compactación, perfil cultural

Resumen

Se evaluó el estado estructural del suelo en distintos sistemas agrícolas y agrícola-pastoriles mediante la metodología del Perfil Cultural. Se consideraron las estructuras de origen antrópico relacionadas al uso y manejo del suelo y a la actividad biológica en el perfil. La evaluación abarcó la proporción de dichas estructuras y sus características principales, así como la descripción del origen de los macroporos generados por raíces y fauna. Al mismo tiempo, se midió la resistencia al corte para cada estructura, la densidad aparente y las porosidades estructural y textural. Los resultados mostraron diferencias significativas entre los sistemas con pasturas y aquellos con cultivos continuos. En los primeros predominó la macroporosidad atribuida a la actividad biológica, mientras que en cultivos continuos se relacionó mayormente con procesos físicos de expansión y contracción. Las estructuras más cohesionadas y con menor porosidad estuvieron presentes en todos los tratamientos, probablemente relacionadas con el tráfico de maquinaria. Los sistemas con pasturas revelaron mayor generación de porosidad biológica en suelos con estructuras altamente cohesivas, con formación de poros redondeados y galerías con excrementos, mientras que en suelos agrícolas continuos surgió una estructura laminar incipiente. La resistencia al corte evidenció variaciones significativas entre estructuras, mostrando alta dependencia del contenido hídrico. Finalmente, el sistema radicular fue más desarrollado en sistemas pastoriles, en contraste con una mayor densidad aparente en cultivos continuos.

Citas

Albuquerque, J. A. y Gubiani, P. I. (eds.). (2023). Física de solos. Sociedad Brasilera de Ciencias do Solo (SBCS). Álvarez, C., Taboada, M., Perelman, S., y Morrás, H. (2014). Topsoil structure in no-tilled soils in the Rolling Pampa, Argentina. Soil Research, 52(6), 533. https://doi.org/10.1071/SR13281

Ball, B. C., Crichton, I., y Horgan, G. W. (2008). Dynamics of upward and downward N₂O and CO₂ fluxes in ploughed or no-tilled soils in relation to water-filled pore space, compaction and crop presence. Soil and Tillage Research, 101, 20–30. https://doi.org/10.1016/j.still.2008.05.012

Ball, B. C., y Munkholm, L. J. (Eds.). (2015). Visual Soil Evaluation: Realizing Potential Crop Production with Minimum Environmental Impact. CABI.

Bertol, I., Gomes, K., Nicoloso, R., Zago, L., y Maraschin, G. (1998). Propriedades físicas do solo relacionadas a diferentes níveis de oferta de forragem numa pastura natural. Pesquisa Agropecuária Brasileira, 33(5), 779–786.

Böhm, W. (1976). In situ estimation of root length at natural soil profiles. The Journal of Agricultural Science, 87, 365–368. https://doi.org/10.1017/S0021859600027660

Boizard, H., Peigné, J., Sasal, M. C., Guimaraes, M., Piron, D., Tomis, V., Vian, J. F., Cadoux, S., Ralisch, R., Tavares, J., Heddadj, D., De Battista, J., Duparque, A., Franchini, J. C., y Roger-Estrade, J. (2017). Developments in the “profil cultural” method for an improved assessment of soil structure under no-till. Soil and Tillage Research, 173, 92–103. https://doi.org/10.1016/j.still.2016.07.007

Boizard, H., Yoon, S. W., Leonard, J., Lheureux, S., Cousin, I., Roger-Estrade, J., y Richard, G. (2013). Using a morphological approach to evaluate the effect of traffic and weather conditions on the structure of a loamy soil in reduced tillage. Soil and Tillage Research, 127, 34–44. https://doi.org/10.1016/j.still.2012.04.007

Boizard, H., Richard, G., Roger-Estrade, J., Dürr, C., y Boiffin, J. (2002). Cumulative effects of cropping systems on the structure of the tilled layer in northern France. Soil and Tillage Research, 64(1-2), 149–164. https://doi.org/10.1016/S0167-1987(01)00252-5

Boizard, H., Peigné, J., Capowiez, Y., y Roger-Estrade, J. (2012). Ability of the “Profile Cultural” method to assess the soil structure of untilled layers. Agrociencia, 16(3), 221–226. https://doi.org/10.31285/AGRO.16.673

Brady N, Weill R. 2008. The Nature and properties of soil (14th ed.) Editorial Pearson.

Burke, W., Gabriels, D., y Bouma, J. (1986). Soil structure assessment. CRC Press.

Calvo, C., Rodríguez-Gallego, L., de León, G., Cabrera-Lamanna, L., Castagna, A., Costa, S., González, L., y Meerhoff, M. (2024). Potential of different buffer zones as nature-based solutions to mitigate agricultural runoff nutrients in the subtropics. Ecological Engineering, 207, 107354. https://doi.org/10.1016/j.ecoleng.2024.107354

Capowiez, Y., Cadoux, S., Bouchand, P., Roger-Estrade, J., Richard, G., y Boizard, H. (2009). Experimental evidence for the role of earthworms in compacted soil regeneration based on field observations and results from a semi-field experiment. Soil Biology and Biochemistry, 41(4), 711-717. https://doi.org/10.1016/j.soilbio.2009.01.006

Castaña, J., Giménez, A., Ceroni, M., Furest, J., y Aunchayna, R. (2011). Caracterización agroclimática del Uruguay 1980-2009 (Serie técnica N° 193). INIA.

Dirección de Estadísticas Agropecuarias (DIEA). (2021). Anuario estadístico agropecuario [En línea]. Montevideo: Ministerio de Ganadería, Agricultura y Pesca. Consultado en 2022. https://descargas.mgap.gub.uy/DIEA/Anuarios/Anuario2021/LIBRO%20ANUARIO%202021%20Web.pdf

Ernst, O., y Siri-Prieto, G. (2009). Impact of perennial pasture and tillage systems on carbon input and soil quality indicators. Soil and Tillage Research, 102, 260–268. https://doi.org/10.1016/j.still.2009.08.001

Ernst, O., y Siri-Prieto, G. (2013). Pérdida de calidad del suelo como factor limitante del rendimiento en el largo plazo. En E. Hoffman (ed.), Actas III Simposio Nacional de Agricultura (pp. 157-166). Facultad de Agronomía (UdelaR), EEMAC, INIA, IPNI Cono Sur.

García, F., Ernst, O., Siri-Prieto, G., y Terra, J. (2004). Integrating no-till into crop-pasture rotations in Uruguay. Soil and Tillage Research, 77(1), 1–13. https://doi.org/10.1016/j.still.2003.12.002

Gautronneau, Y., y Manichon, H. (1987). Guide méthodique du profil cultural. CEREF/ISARA.

Hamza, M. A., y Anderson, W. K. (2005). Soil compaction in cropping systems: A review of the nature, causes and possible solutions. Soil and Tillage Research, 82(2), 121–145. https://doi.org/10.1016/j.still.2004.08.009

Henin, S., Gras, R., y Monnier, G. (1972). El perfil cultural: el estado físico del suelo y sus consecuencias agronómicas. Traducción de Carlos Roquero de Laburu. Madrid: Mundi-Prensa.

MAP/DSF. (1976). Carta de reconocimiento de suelos del Uruguay a escala 1:1000000. Ministerio de Agricultura y Pesca, Dirección de Suelos y Fertilizantes. Montevideo.

National Cooperative Soil Survey (NCSS), (2018). National Cooperative Soil Survey Characterization Database. http://ncsslabdatamart.sc.egov.usda.gov/.

Peigné, J., Vian, J., Cannavacciuolo, M., Lefevre, V., Gautronneau, Y., y Boizard, H. (2013). Assessment of soil structure in the transition layer between topsoil and subsoil using the profile cultural method. Soil and Tillage Research, 127, 13–25. https://doi.org/10.1016/j.still.2012.05.014

Place, G., Bowman, D., Burton, M., y Rufty, T. (2008). Root penetration through a high bulk density soil layer: Differential response of a crop and weed species. Plant and Soil, 307, 179–190. https://doi.org/10.1007/s11104-008-9594-4

Pravia, M. V., Kemanian, A. R., Terra, J. A., Shi, Y., Macedo, I., y Goslee, S. (2019). Soil carbon saturation, productivity, and carbon and nitrogen cycling in crop-pasture rotations. Agricultural Systems, 171, 13-22. https://doi.org/10.1016/j.agsy.2018.11.001

Rasouli, S., Whalen, J. K., y Madramootoo, C. A. (2014). Review: Reducing residual soil nitrogen losses from agroecosystems for surface water protection in Quebec and Ontario, Canada: Best management practices, policies and perspectives. Canadian Journal of Soil Science, 94, 109–127. https://doi.org/10.4141/cjss2013-015

Richard, G., Boizard, H., Roger-Estrade, J., Boiffin, J., y Guérif, J. (1999). Field study of soil compaction due to traffic in northern France: pore space and morphological analysis of the compacted zones. Soil and Tillage Research, 51(1–2), 151-160. https://doi.org/10.1016/S0167-1987(99)00058-6.

Rodríguez-Gallego L., Calvo C., G. de León, A. Castagna, L. Cabrera-Lamanna, S. Costa, L. González, y M. Meerhoff. 2020. Evaluación de la dinámica del fósforo en zonas buffer en el Embalse de Paso Severino y propuestas de alternativas de manejo para la reducción de los aportes difusos de este nutriente. Convenio MVOTMA/DINAMA-UDELAR. CURE, UDELAR. 66 pp.

Rodríguez-Gallego, L., De León, G., Cardoso, A., Pérez, W., Castagna, A., Guillén, J., Lescano, C., Costa, S., Pasquariello, S., Rodríguez, C., Goyenola, G., Meerhoff, M., Chalar, G., Arocena, R., Texeira de Mello, F., y Tesitore, G. (2021). Reporte con descripción del rol del bosque nativo y sus características en relación a su capacidad de amortiguamiento de los nutrientes y agroquímicos en diferentes contextos productivos.

Roger-Estrade, J., Richard, G., Caneill, J., Boizard, H., Coquet, Y., Défossez, P., y Manichon, H. (2004). Morphological characterisation of soil structure in tilled fields: From a diagnosis method to the modelling of structural changes over time. Soil and Tillage Research, 79, 33–49. https://doi.org/10.1016/j.still.2004.03.009

Rovira, P.; Ayala, W.; Terra, J.; García-Préchac, F.; Harris, P.; Lee, M.R.F.; Rivero, M.J. (20209. The ‘Palo a Pique’ Long-Term Research Platform: First 25 Years of a Crop–Livestock Experiment in Uruguay. Agronomy, 10, 441. https://doi.org/10.3390/agronomy10030441 https://doi.org/10.3390/agronomy10030441

Salvo, L., Hernández, J., y Ernst, O. (2010). Distribution of soil organic carbon in different size fractions under pasture and crop rotations with conventional tillage and no-till systems. Soil and Tillage Research, 109(2), 116–122. https://doi.org/10.1016/j.still.2010.05.008

Salvo, L., Hernández, J., y Ernst, O. (2014). Soil organic carbon dynamics under different tillage systems in rotations with perennial pastures. Soil and Tillage Research, 135, 41–48. https://doi.org/10.1016/j.still.2013.08.014

Sasal, M. C. (2003). Factores condicionantes de la evolución estructural de suelos limosos bajo siembra directa: Efecto sobre el balance de agua [Tesis Doctoral]. Facultad de Agronomía, Universidad de Buenos Aires.

Sasal, M. C., Andriulo, A. E., y Taboada, M. A. (2006). Soil porosity characteristics and water movement under zero tillage in silty soils in Argentinian Pampas. Soil and Tillage Research, 87, 9–18. https://doi.org/10.1016/j.still.2005.02.025

Sasal, M. C., Castiglioni, M. G., y Wilson, M. G. (2010). Effect of crop sequences on soil properties and runoff on natural-rainfall erosion plots under no tillage. Soil and Tillage Research, 108(1-2), 24–29. https://doi.org/10.1111/sum.12606

Sasal, M. C., Boizard, H., Andriulo, A., Wilson, M., y Léonard, J. (2016a). Platy structure development under no-tillage in the northern humid Pampas of Argentina and its impact on runoff. Soil and Tillage Research, 173, 33–41. https://doi.org/10.1016/j.still.2016.08.014

Sasal, M. C., Léonard, J., Andriulo, A., y Boizard, H. (2016b). A contribution to understanding the origin of platy structure in silty soils under no tillage. Soil and Tillage Research, 173, 42–48. https://doi.org/10.1016/j.still.2016.08.017

Soil Science Society of America (SSSAJ). (1996). Glossary of soil science terms. SSSAJ.

Soil Survey Staff (2014) (SSS) Keys to Soil Taxonomy [12th edition]. USDA-Natural Resources Conservation Service.

Stengel, P. (1979). Utilisation de l’analyse des systèmes de porosité pour la caractérisation de l’état physique du sol in situ. Annales de l'Agronomie, 30, 27–51.

Taboada, M., Micucci, F., Cosentino, D., y Lavado, R. (1998). Comparison of compaction induced by conventional and zero tillage in two soils of the Rolling Pampa of Argentina. Soil and Tillage Research, 49, 57–63. https://doi.org/10.1016/S0167-1987(98)00132-9

Terra, J. A., y García Préchac, F. (2001). Siembra directa y rotaciones forrajeras en las lomadas del este: Síntesis 1995–2000 (Serie Técnica N° 125). Montevideo: INIA..

Unger, P., y Kaspar, T. (1994). Soil compaction and root growth: A review. Agronomy Journal, 86, 759–766. https://doi.org/10.2134/agronj1994.00021962008600050004x

Vocanson, A., Roger-Estrade, J., Boizard, H., y Jeuffroy, M. (2006). Effects of soil structure on pea (Pisum sativum L.) root development according to sowing date and cultivar. Plant and Soil, 281, 121. https://doi.org/10.1007/s11104-005-3938-0

Descargas

Publicado

27-06-2025

Cómo citar

De Leon, G., Perez , M., Terra, J., & Ernst, O. (2025). EVALUACIÓN DEL ESTADO ESTRUCTURAL DEL SUELO EN SISTEMAS AGRÍCOLA-PASTORILES. Ciencia Del Suelo, 43(1), 51–69. https://doi.org/10.64132/cds.v43i1.896

Número

Sección

Manejo y Conservación de Suelos y Aguas. Riego y Drenaje