EL BIOCARBÓN DEL BAMBÚ GUADUA CHACOENSIS (POACEAE, BAMBUSEAE) AFECTÓ A ESPECIES HORTÍCOLAS EN SUELO SALINO-SÓDICO

Autores/as

  • Julieta Milone Facultad de Agronomía, Universidad de Buenos Aires
  • Cecilia Casas Facultad de Agronomía, Universidad de Buenos Aires
  • Andrea Susana Vega Facultad de Agronomía, Universidad de Buenos Aires

Palabras clave:

enmienda de suelos, manejo sustentable, pH del suelo, remediación del suelo

Resumen

El biocarbón se utiliza como remediador de suelos cada vez con más frecuencia. Sin embargo, el impacto en el suelo depende de las limitaciones edáficas, el material empleado para obtener el biocarbón y la concentración aplicada. Se estudiaron los efectos del biocarbón de bambú de G. chacoensis sobre la germinación, y como una técnica de enmienda de suelos salino-sódicos. Se utilizaron soluciones acuosas con 0, 2,5 y 5% de biocarbón de bambú (BC) para determinar el porcentaje de germinación de semillas y la longitud de radícula en dos especies hortícolas: rúcula (Eruca sativa) y rabanito (Raphanus sativus). Además, se incorporó 0, 0,5 y 2,5% de BC a un suelo salino-sódico para evaluar el efecto sobre ambas especies, las cuales son moderadamente tolerantes a la salinidad. En cada especie se evaluó la altura de la planta, la biomasa foliar y radicular. Las soluciones de 2,5 y 5% BC disminuyeron la germinación de la rúcula en un 3,14% y 5,2%, respectivamente, en comparación con el control. La adición de BC disminuyó la longitud de la radícula en ambas especies, siendo la reducción más significativa con la mayor concentración de BC. La adición de 0,5% y 2,5% de BC disminuyó la altura de la rúcula en un 27,32% y 50,33%, respectivamente, en comparación con el control, lo que resultó en plantas más pequeñas con menos biomasa de hojas y raíces. La adición de biocarbón no afectó la biomasa foliar, pero en el tratamiento 2,5% BC se redujo la biomasa de raíces en un 53,85% en comparación con el 0% BC. Además de las características inherentes del biocarbón, estos resultados estarían influenciados por el aumento del pH del suelo, provocado por la adición del BC. Se propone evaluar el biocarbón con distintas propiedades en suelos salino-sódicos, y como enmienda en la remediación de suelos ácidos.

Citas

Abdullaeva, Y. (2014). Biochar effects on fertility of saline and alkaline soils (Navoiy region, Uzbekistan). United Nations University Land Restoration Training Programme [final project]. http://www.unulrt.is/static/fellows/document/abdullaeva2014.pdf.

Adekiya, A. O., Agbede, T. M., Aboyeji, C. M., Dunsin, O. & Simeon, V. T. (2019). Effects of biochar and poultry manure on soil characteristics and the yield of radish. Scientia Horticulturae. (243):457–463. doi: 10.1016/j.scienta.2018.08.048

Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Lee, S. S. & Ok, Y. S. (2014). Biochar as a sorbent for contaminant management in soil and water. A review. Chemosphere 99:19-23. doi: 10.1016/j.chemosphere.2013.10.071

Aimetta, M. B., Muñoz, S. A., Bustos, D., Davidenco, V., Cazorla, C. R., Galarza, C. M. y Salvagiotti, F. (2020). Cuantificación del uso agrícola de suelos con limitantes salinas y sódicas mediante el índice NDVI. Ciencia del Suelo. 38(1):174–186.

Alchouron, J., Navarathna, C., Chludil, H. D., Dewage, N. B., Perez, F., Hassan, E. B., Pittman, C. U. Jr, Vega, A. S. & Mlsna, T. E. (2020). Assessing South American Guadua chacoensis bamboo biochar and Fe3O4 nanoparticle dispersed analogues for aqueous arsenic (V) remediation. Science of Total Environment. 706:135943. doi: 10.1016/j.scitotenv.2019.135943

Alchouron, J., Navarathna, C., Rodrigo, P. M., Snyder, A., Chludil, H. D., Vega, A. S., Bosi, G., Perez, F., Mohan, D., Pittman, C. U. Jr & Mlsna, T. E. (2021). Household arsenic contaminated water treatment employing iron oxide/bamboo biochar composite: an approach to technology transfer. Journal of Colloid Interface Science. 587:767–779. doi: 10.1016/j.jcis.2020.11.036

Alcivar, M., Zurita–Silva, A., Sandoval, M., Muñoz, C. & Schoebitz, M. (2018). Reclamation of saline–sodic soils with combined amendments: impact on quinoa performance and biological soil quality. Sustainability 10(9):3083. doi: 10.3390/su10093083

Ali, L., Xiukang, W., Naveed, M., Ashraf, S., Nadeem, S. M., Haider, F. U. & Mustafa, A. (2021). Impact of biochar application on germination behavior and early growth of maize seedlings: insights from a growth room experiment. Applied Sciences. 11:11666. doi: 10.3390/app112411666

An, N., Zhang, L., Liu, Y., Shen, S., Li, N., Wu, Z., Yang, J., Han, W. & Han, X. (2022). Biochar application with reduced chemical fertilizers improves soil pore structure and rice productivity. Chemosphere 298:134304. doi: 10.1016/j.chemosphere.2022.134304

Awad, Y. M., Vithanage, M., Niazi, N. K., Rizwan, M., Rinklebe, J., Yang, J. E., Ok, Y. S. & Lee, S. S. (2017). Potential toxicity of trace elements and nanomaterials to Chinese cabbage in arsenic– and lead–contaminated soil amended with biochars. Environmental Geochemistry Health 41(5):1777–1791. doi: 10.1007/s10653–017–9989–3

Bates, D., Maechler, M., Bolker, B. & Walker, S. (2015). Fitting linear mixed–effects models using lme4. J. Stat. Softw. 67(1):1–48. doi:10.18637/jss.v067.i01

Blanco–Canqui, H. (2017). Biochar and soil physical properties. Journal of the American Oil Chemists' Society 81:687–711. doi: 10.2136/sssaj2017.01.0017

Bouyoucos, G. J. (1951). A recalibration of the hydrometer method for making mechanical analysis of soil. Agronomy Journal 43:434–438.

Castellón Romero, D. y Andrade Foronda, D. (2020). Enmiendas orgánicas para la remediación de suelos salino–sódicos del Valle Alto de Cochabamba. Revista de Agricultura (Bolivia) 62:57–64.

Dai, Z., Zhang, X., Tang, C., Muhammad, N., Wua, J., Brookes, P. C. & Xu, J. (2017). Potential role of biochars in decreasing soil acidification – A critical review. Science of Total Environment. 581–582:601–611. doi: 10.1016/j.scitotenv.2016.12.169

Food and Agriculture Organization of the United Nations (FAO). (2021). Global map of salt–affected soils: 1–20. https://www.fao.org/3/cb7247en/cb7247en.pdf

Foti, M. N. y Lallana, V. H. (2005). Bioensayo de germinación con semillas de Eruca sativa Mill. para la detección de salinidad y presencia de herbicida en agua. Revista FABICIB 9:9–16. Spanish.

Free, H. F., McGill, C. R., Rowarth, J. S. & Hedley, M. J. (2010). The effect of biochars on maize (Zea mays) germination. New Zealand Journal of Agricultural Research 53(1):1–4. doi:10.1080/00288231003606039

Glaser, B., Lehmann, J. & Zech, W. (2002). Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal – a review. Biology and Fertility of Soils 35:219–230. doi: 10.1007/s00374–002–0466–4

Guida–Johnson, B., Abraham, E. M. y Cony, M. A. (2017). Salinización del suelo en tierras secas irrigadas: perspectivas de restauración en Cuyo, Revista de la Facultad de Ciencias Agrarias UNCUYO 49(1):205–215.

Gunes, A., Inal, A., Taskin, M.B., Sahin, O., Kaya, E.C. & Atakol, A. (2014). Effect of phosphorus–enriched biochar and poultry manure on growth and mineral composition of lettuce (Lactuca sativa L. cv.) grown in alkaline soil. Soil Use and Managment. 30:182–188. doi: 10.1111/sum.12114

Hasana, H., Beyene, S., Kifilu, A. & Kidanu, S. (2022). Effect of phosphogypsum amendment on chemical properties of sodic soils at different incubation periods. Applied and Environmental Soil Science 9097994. doi: 10.1155/2022/9097994

Hsieh, E.J. & Waters, B.M. (2016). Alkaline stress and iron deficiency regulate iron uptake and riboflavin synthesis gene expression differently in root and leaf tissue: implications for iron deficiency chlorosis. Journal of Experimental Botany 67:5671–5685. doi: 10.1093/jxb/erw328

Hussain, S., Zhang, J., Zhong, C., Zhu, L., Cao, X., Yu, S., James, A. B., Hu, J. & Jin, Q. (2017). Effects of salt stress on rice growth, development characteristics, and the regulating ways: A review. Journal of Integrative Agriculture 16(11):2357–2374. doi: 10.1016/S2095–3119(16)61608–8

Hussien Ibrahim, M. E, Adam Ali, A. Y., Zhou, G., Ibrahim Elsiddig, A. M, Zhu, G., Ahmed Nimir, N. E, & Ahmad, I. 2020. Biochar application affects forage sorghum under salinity stress. Chilean journal of agricultural research 80(3): 317-325. doi: 10.4067/S0718-58392020000300317

International Biochar Initiative (IBI). (April 2012). Standardized product definition and product testing guidelines for biochar that is used in soil. International Biochar Initiative. https://biochar–international.org/

IRAM/SAGyP 29571–3 Environmental quality – Soil quality. Determination of organic matter in soils. Part 3 – Determination of organic carbon.

Ke, H., Zhang, Q. & Liu, G. (2018). Effects of wood biochar addition on growth of cherry radish (Raphanus sativus L. var. radculus pers) IOP Conf. Ser.: Earth Environ Sci. 128:012182. doi:10.1088/1755–1315/128/1/012182

Lehmann, J. & Joseph, S. (2015). Biochar for environmental management: an introduction. In: Lehmann J, Joseph, S editors. Biochar for Environmental Management Science and Technology. London: Routledge; p. 1–12.

Liao, S., Bo, P., Li, H., Zhang, D. & Xing, B. (2014). Detecting free radicals in biochars and determining their ability to inhibit the germination and growth of corn, wheat and rice seedlings. Environmental Science & Technology 48:8581–8587. doi: 10.1021/es404250a

Lizarazu, M. y Vega, A. S. (2012). Guadua. En: Zuloaga FO, Rúgolo de Agrasar ZE, Anton AM, Eds. Flora Argentina. Plantas Vasculares de la República Argentina. Monocotyledoneae: Poaceae: Aristidoideae–Pharoideae. 3(1):59–63.

Londoño, X. (2009). Usos y potencialidades de los bambúes en Sur América. Botánica Brasileira: futuro e compromissos: 236–243. 6º Congreso Nacional de Botánica, Feira de Santana, Bahia, Brasil.

Madrigal, L. P. (2016). Cambio climático, ensalitramiento de suelos y producción agrícola en áreas de riego. Terra Latinoamericana 34(2):207–218.

Maraseni, T. N. (2010). Biochar: maximising the benefits. International Journal of Environmental Studies 67(3):319–327. doi:10.1080/00207231003612225

Martínez de Zorzi, V. (2019). Adición de biocarbón de Guadua chacoensis (Poaceae, Bambusoideae, Bambuseae) en suelos contaminados y su efecto sobre el crecimiento de Arabidopsis thaliana (Brassicaceae). Thesis presented in fulfillment of the requirements for the degree in Environmental Science in the college of Facultad de Agronomía, University of Buenos Aires, Argentina.

Mete, F. Z., Mia, S., Dijkstra, F. A., Abuyusuf, M. & Hoissan, A. S. M. I. (2015). Synergistic effects of biochar and NPK fertilizer on Soybean yield in an alkaline soil. Pedosphere 25(5):713–719.

Munns, R. & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology. 59:651–681. doi: 10.1146/annurev.arplant.59.032607.092911

Muñoz, C., Góngora, S. & Zagal, E. (2016). Use of biochar as a soil amendment: a brief review. Chilean Journal of Agricultural & Animal Sciences 32(1):37–47.

Naeem, M. A., Khalid, M., Ahmad, Z., Naveed, M. (2016). Low pyrolysis temperature biochar improves growth and nutrient availability of maize on typic calciargid. Communications in Soil Science and Plant Analysis. 47(1):41–51. doi:10.1080/00103624.2015.1104340

Nath, H., Sarkar, B., Mitra, S. & Bhaladhare, S. (2022). Biochar from biomass: a review on biochar preparation its modification and impact on soil including soil microbiology. Geomicrobiology Journal. 39:373–388. doi: 10.1080/01490451.2022.2028942

Pinheiro, J., Bates, D. & R Core Team. (2023). nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1–163, https://CRAN.R–project.org/package=nlme.

Rahman, M. M., Akter, N., Karim, M. A. & Hossain, M. M. (2017). Effect of salinity on germination, seedling growth and yield of radish (Raphanus sativus L.). Journal of Agriculture and Ecology Research International 12(2):1–10.

R Development Core Team. (2019). R: a language and environment for statistical computing. Vienna, Austria.

Rogovska, N., Laird, D., Cruise, R., Trabue, S. L. & Heaton, E. A. (2012). Germination tests for assessing biochar quality. Journal of Environmental Quality 41(4):1014–1022. doi: 10.2134/jeq2011.0103

RStudio T. (2019). RStudio: Integrated Development for R

Salem, T. M., Refaie, K. M., Sherif, A. E., Ahmed, M. (2019). Biochar application in alkaline soil and its effect on soil and plant. Acta agriculturae Slovenica 114(1):85–96. doi: 10.14720/aas.2019.114.1.10

Sanchez, R. M., Dunel Guerra, L. y Scherger, M. (2015). Evaluación de las áreas bajo riego afectadas por salinidad y/o sodicidad en Argentina. Programa Nacional Agua https://www.repositorio.cenpat-conicet.gob.ar/handle/123456789/566

Sangiacomo, M., Garbi, M. y Del Pino, M. (2002a). Manual de Producción de Hortalizas. Cultivo de rabanito – Producción Vegetal III – Horticultura http://www.hort.unlu.edu.ar/sites/www.hort.unlu.edu.ar/files/site/Rabanito.pdf

Sangiacomo, M., Garbi, M. y Del Pino M. (2002b). Manual de Producción de Hortalizas. Cultivo de rúcula – Producción Vegetal III – Horticultura http://www.hort.unlu.edu.ar/sites/www.hort.unlu.edu.ar/files/site/R%C3%BAcula.pdf

Sathe, P. S., Adivarekar, R. V. & Pandit, A. B. (2021).Valorization of peanut shell biochar for soil amendment. Journal of Plant Nutrition 45:(4):503–521. doi: 10.1080/01904167.2021.1963771

Shetty, R. & Prakash, N. B. (2020). Effect of different biochars on acid soil and growth parameters of rice plants under aluminium toxicity. Scientific Research Publishing (SCIRP) 10:12249. doi: 10.1038/s41598–020–69262–x

Singh, B., Mei Dolk, M., Shen, Q. & Camps–Arbestain, M. (2017). Biochar pH, electrical conductivity, and liming potential. In: Singh B, Camps–Arbestain M, Lehmann J, editors. Biochar: A Guide to Analytical Methods. CSIRO, London; p. 23–38.

Sonmez, S., Buyuktas, D., Okturen, F. & Citak, S. (2018). Assessment of different soil to water ratios (1:1; 1:2,5; 1:5) in soil salinity studies. Geoderma 144(1–2):361–369. doi: 10.1016/j.geoderma.2007.12.005

Sumner, M. E. & Miller, W. P. (1996). Cation exchange capacity and exchange coefficients. In: Sparks, DL editor. Methods of soil analysis Part 3: Chemical methods. Soil Science Society of America Book Series 5. Madison, Wisconsin; p. 1201–1230.

Sun, Y., Gao, B., Yao, Y., Fang, J., Zhang, M., Zhou, Y., Chen, H. & Yang, L. (2014). Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties. Chemical Engineering Journal 240:574–578. doi: 10.1016/j.cej.2013.10.081.

Thiers, B. 2023. Index Herbariorum: A global directory of public herbaria and associated staff. http://sweetgum.nybg.org/ih/

Vega, A. S. & Cámara Hernández, J. (2008). La floración de Guadua chacoensis (Poaceae, Bambusoideae, Bambuseae) Revista Facultad de Agronomía UBA 28(2–3):107–110. Spanish.

Vega, A. S. & Rúgolo, Z. E. (2016). Guadua Kunth. En: Rúgolo, Z. E. editor. Bambúes leñosos nativos y exóticos de la Argentina. 1ª edición, Ed. Trama, CABA; p. 99–112.

Walkley, A. & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science. 37(1):29–38.

Wang, Y., Wang, X., Liu, M., Wu, Z., Yang, L., Xia, S. & Zhao, J. (2012). Adsorption of Pb (II) from aqueous solution to Ni–doped bamboo charcoal. Journal of Industrial and Engineering Chemistry 19:353–359. doi: 10.1016/j.jiec.2012.08.024

Wang, Y., Xiao, X., Xu, Y. & Chen, B. (2019). Environmental effects of silicon within biochar (sichar) and carbon–silicon coupling mechanisms: a critical review. Environ Sci Technol. 53:13570–13582. doi: 10.1021/acs.est.9b03607

Weber, K. & Quicker, P. (2018). Properties of biochar. Fuel 217:240–261. doi: 10.1016/j.fuel.2017.12.054

Yang, W. & Zhang, L. (2022). Biochar and cow manure organic fertilizer amendments improve the quality of composted green waste as a growth medium for the ornamental plant Centaurea cyanus. Journal of Environmental Science and Pollution Research 29:45474–45486. doi: 10.1007/s11356–022–19144–8

Yu, H., Zou, W., Chen, J., Chen, H., Yu, Z., Huang, J., Tang, H., Wei, X. & Gao, B. (2019). Biochar amendment improves crop production in problem soils: A review. Journal of Environmental Management 232: 8–21. doi: 10.1016/j.jenvman.2018.10.117

Yu, J., Wang, Z., Meixner, F. X., Yang, F., Wu, H. & Chen, X. (2010). Biogeochemical characterizations and reclamation strategies of saline sodic soil in Northeastern China. Clean – Soil, Air, Water 38(11):1010–1016. doi: 10.1002/clen.201000276

Zhao, W., Zhou, Q., Tian, Z., Cui, Y., Liang, Y. & Wang, H. (2020). Apply biochar to ameliorate soda saline–alkali land, improve soil function and increase corn nutrient availability in the Songnen Plain. Science of the Total Environment 722:137428. doi: 10.1016/j.scitotenv.2020.137428

Zhang, K., Wang, Y., Mao, J., Chen, B. (2020). Effects of biochar nanoparticles on seed germination and seedling growth. Environmental Pollution 256:113409. Doi: 10.1016/j.envpol.2019.113409

Zhang, W. B. (2009). Process and properties of bamboo charcoal in utilization of bamboo. I. Bamboo technology training course for developing countries. China National Bamboo Research Center, Hangzhou, Popular Republic of China: 97–108.

Descargas

Publicado

27-12-2023

Cómo citar

Milone, J., Casas, C., & Vega, A. S. (2023). EL BIOCARBÓN DEL BAMBÚ GUADUA CHACOENSIS (POACEAE, BAMBUSEAE) AFECTÓ A ESPECIES HORTÍCOLAS EN SUELO SALINO-SÓDICO. Ciencia Del Suelo, 41(2), 273–284. Recuperado a partir de https://ojs.suelos.org.ar/index.php/cds/article/view/811

Número

Sección

Contaminación del Suelo y Calidad del Medio Ambiente