• Jimena Ortiz INTA
  • Valeria Faggioli Instituto Nacional de Tecnología Agropecuaria
  • Martin Zamora Instituto Nacional de Tecnología Agropecuaria
  • Monica Boccolini Instituto Nacional de Tecnología Agropecuaria
  • Claudio Lorenzon Instituto Nacional de Tecnología Agropecuaria
  • Vanesa Pegoraro Instituto Nacional de Tecnología Agropecuaria
  • Luciano Gabbarini Universidad Naciona de Hurlingham

Palabras clave:

Microbial biomass, Enzymatic activity, Microbial diversity, Agroecology


Agroecological management emerges as a promising alternative to current agricultural management, which is associated with impoverishment of environmental quality and soil fertility. Thus, the objective of this study was to evaluate the conversion from conventional to agroecological management by analyzing soil chemical and microbiological properties. This study was carried out in a field of the Barrow Experimental Farm of the National Institute of Agricultural Technology (INTA), Buenos Aires, Argentina, where two treatments were evaluated: agroecological (AE) and conventional management (CV). The soil sampling was carried out per soil-specific zones within each treatment. Samples were taken at 0 to 10 cm, and several soil chemical and microbiological parameters were determined. The AE management led to an evident restoration of soil fertility, since soil organic carbon, total nitrogen and pH showed increases of 21%, 16% and 3% respectively. The AE management also led to increases in the activities of enzymes involved in the carbon cycle (cellobiohydrolase and β-glucosidase), nitrogen cycle (N-acetyl-b-glucosamine) and sulfur cycle (arylsulfatase), and to an increase in the microbial biomass carbon, as well as in the diversity and richness of the bacterial community (p<0.05), probably due to the increase in the quality of the residues. These results are in agreement with previous studies, which have reported an increase in the diversity of bacteria when incorporating cover crops or leguminous intercrops. Bacterial and fungal communities differed between managements (PERMANOVA, bacteria p<0.017 r2=0.1074; fungi p<0.001, r2=0.1973). The bacterial and fungal communities of the AE management were the only ones that correlated positively and significantly with the soil properties measured, corroborating their key role in these systems. These results reaffirm the importance of improving aboveground and belowground biodiversity to maintain or restore soil fertility.


Albertengo, J., Belloso, C., Giraudo, M.B., Peiretti, R., Permingeat, H., Wall, L. (2013). Conservation Agriculture in Argentina. In: Conservation agriculture: Global prospects and challenges. (pp. 352-374). Wallingford UK: CABI.

Alef, K. (1995). Soil respiration. In: Alef, K. and Nanninpieri P. (ed.). Methods in Applied Soil Microbiology and Biochemistry. (pp. 214-219). Academic Press. Harcourt Brace and Company publishers, London U.K.

Altieri, M.A., Nicholls, C.I. (2017). The adaptation and mitigation potential of traditional agriculture in a changing climate. Climatic Change. 140(1), 33-45.

Aparicio, V., Zamora, M., Barbera, A., Castro-Franco, M., Domenech, M., De Gerónimo, E., Costa, J.L. (2018). Industrial agriculture and agroecological transition systems: A comparative analysis of productivity results, organic matter and glyphosate in soil. Agricultural systems. 167, 103-112.

Bardgett, R.D., Van Der Putten, W.H. (2014). Belowground biodiversity and ecosystem functioning. Nature. 515(7528), 505. doi:10.1038/nature13855.

Bremner, J.M. (1996). Nitrogen-total. Methods of Soil Analysis Part 3-Chemical Methods, (methodsofsoilan3), (Ed.), American Society of Agronomy Madison, Wisconsin, 1085–1121.

Brennan, E.B., Acosta-Martinez, V. (2019). Cover crops and compost influence soil enzymes during six years of tillage‐intensive, organic vegetable production. Soil Science Society of America Journal. 83.3, 624-637.

Bowles, T.M., Acosta-Martínez, V., Calderón, F., Jackson, L.E. (2014). Soil enzyme activities, microbial communities, and carbon and nitrogen availability in organic agroecosystems across an intensively-managed agricultural landscape. Soil Biology and Biochemistry. 68, 252-262.

Chavarría, D. N., Verdenelli, R. A., Serri, D. L., Restovich, S. B., Andriulo, A. E., Meriles, J. M., Vargas-Gil, S. (2016). Effect of cover crops on microbial community structure and related enzyme activities and macronutrient availability. European journal of soil biology, 76, 74-82.

Di Rienzo, J., Casanoves, F., Balzarini, M., Gonzalez, L., Tablada, M., Robledo, C. (2020). InfoStat versión 2020. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina.

Dick, R.P. (1994). Soil Enzyme Activities as Indicators of Soil Quality 1. Doran, JW; DC Coleman; DF Bezdicek & BA Stewart. (eds.). Defining soil quality for a sustainable environment. (pp. 107-124). Madison, Wisconsin, USA.

Doran, J.W., and Parkin, T. B. (1994). Defining and assessing soil quality. In: Doran, JW; DC Coleman; DF Bezdicek & BA Stewart. (eds.). Defining Soil Quality for a Sustainable Environment. (pp. 3-21). Madison, Wisconsin, USA.

Duchene, O., Vian, J.F., Celette, F. (2017). Intercropping with legume for agroecological cropping systems: Complementarity and facilitation processes and the importance of soil microorganisms. A review. Agriculture, Ecosystems and Environment. 240, 148-161.

Food and Agriculture Organization, (2020). FAOSTAT Online Database (Last update Jan, 2023). Available at ( (accessed, January 2023).

Ferreras, L., Toresani, S., Bonel, B., Fernández, E., Bacigaluppo, S., Faggioli, V., Beltrán, C. (2009). Parámetros químicos y biológicos como indicadores de calidad del suelo en diferentes manejos. Ciencia del suelo, 27(1), 103-114.

Fierer, N. (2017). Embracing the unknown: disentangling the complexities of the soil microbiome. Nature Reviews Microbiology, 15(10): 579.

Foley, J.A., Ramankutty, N., Brauman, K.A., Cassidy, E.S., Gerber, J.S., Johnston, M., Mueller, N.D., O'Connell, C., Ray, D.K., West, P,C., Balzer, C., Bennett, E.M., Carpenter, SR., Hill, J., Monfreda, C., Polasky, S., Rockström, J., Sheehan, J., Siebert, S., Tilman, D., Zaks, D.P.M. (2011). Solutions for a cultivated planet, Nature. 478, 337–342. doi:10.1038/nature10452.

Frasier, I., Noellemeyer, E., Figuerola, E., Erijman, L., Permingeat, H., Quiroga, A. (2016). High quality residues from cover crops favor changes in microbial community and enhance C and N sequestration. Global ecology and conservation. 6, 242-256.

García-Orenes, F., Morugán-Coronado, A., Zornoza, R., Scow, K. (2013). Changes in soil microbial community structure influenced by agricultural management practices in a Mediterranean agro-ecosystem. PloS one. 8, (11).

GelCompare II. (2005). Vertion 4.602 of Applied Maths NV.

Gessner, M.O., Swan, C.M., Dang, C.K., McKie, B.G., Bardgett, R.D., Wall, D.H., Hättenschwiler, S. (2010). Diversity meets decomposition. Trends in ecology and evolution. 25(6), 372-380.

Gliessman, S. R. (2012). Quantifying the Agroecological Component Agroecology. In: Researching the Ecological Basis for Sustainable Agriculture. (pp. 366). Springer Science and Business Media.

Gutiérrez-Rojas, I., Moreno-Sarmiento, N., Montoya, D. (2015). Mecanismos y regulación de la hidrólisis enzimática de celulosa en hongos filamentosos: casos clásicos y nuevos modelos. Revista Iberoamericana de Micología, 32(1), 1-12.

Hartman, K., Van der Heijden, M.G., Wittwer, R.A., Banerjee, S., Walser, J.C., Schlaeppi, K. (2018). Cropping practices manipulate abundance patterns of root and soil microbiome members paving the way to smart farming. Microbiome. 6(1), 1-14. DOI 10.1186/s40168-017-0389-9.

Harris, R., Parr, J., Gardner, W., Elliot, L. (1981). Effect of water potential on microbial growth and activity. In: Water potential relations in soil microbiology. (pp. 23-95). Soil Science Society of America.

Ho, A., De Roy, K., Thas, O., De Neve, J., Hoefman, S., Vandamme, P., ... Boon, N. (2014). The more, the merrier: heterotroph richness stimulates methanotrophic activity. The ISME journal, 8(9), 1945-1948.

Holland, J.E., Bennett, A.E., Newton, A.C., White, P.J., McKenzie, B.M., George, T.S., Hayes, R.C. (2018). Liming impacts on soils, crops and biodiversity in the UK: a review. Science of the total environment. 610, 316-332.

Isbell, F., Adler, P.R., Eisenhauer, N., Fornara, D., Kimmel, K., Kremen, C., Scherer‐Lorenzen, M. (2017). Benefits of increasing plant diversity in sustainable agroecosystems. Journal of Ecology. 105(4), 871-879.

Lange, M., Eisenhauer, N., Sierra, C.A., Bessler, H., Engels, C., Griffiths, R.I., Steinbeiss, S. (2015). Plant diversity increases soil microbial activity and soil carbon storage. Nature Communications. 6, 6707. DOI: 10.1038/ncomms7707.

Mäder, P., Fliessbach, A., Dubois, D., Gunst, L., Fried, P., Niggli, U. (2002). Soil fertility and biodiversity in organic farming. Science. 296(5573), 1694-1697. DOI: 10.1126/science.1071148.

Maestre, F. T., Delgado-Baquerizo, M., Jeffries, T. C., Eldridge, D. J., Ochoa, V., Gozalo, B., Singh, B. K. (2015). Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proceedings of the National Academy of Sciences, 112(51), 15684-15689.

Manzoni, S., Taylor, P., Richter, A., Porporato, A., Ågren, G. I. (2012). Environmental and stoichiometric controls on microbial carbon‐use efficiency in soils. New Phytologist, 196(1), 79-91.

McDaniel, MD., Tiemann, LK., Grandy, A.S. (2014). Does agricultural crop diversity enhance soil microbial biomass and organic matter dynamics? A meta‐analysis. Ecological Applications. 24(3), 560-570.

Menhinick, E.F. (1964). A Comparison of some Species-Individuals Diversity Indices Applied to Samples of Field Insects. Ecology. 45 (4), 859-861.

Muyzer, G., and Smalla, K. (1998). Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Leeuwenhoek. 73: 127-141.

Muyzer, G., Waal, E.C., Uitterlinden, A.G. (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59, 695–700.

Nannipieri, P., Trasar-Cepeda, C., Dick, R.P. (2018). Soil enzyme activity: a brief history and biochemistry as a basis for appropriate interpretations and meta-analysis. Biol Fertil Soils. 54, 11. DOI 10.1007/s00374-017-1245-6.

Novelli, L. E., Caviglia, O. P., Jobbágy, E. G., Sadras, V. O. (2023). Diversified crop sequences to reduce soil nitrogen mining in agroecosystems. Agriculture, Ecosystems and Environment, 341, 108208.

Ortiz, J., Faggioli, V. S., Ghio, H., Boccolini, M. F., Ioele, J. P., Tamburrini, P., Gudelj, V. (2020). Impacto a largo plazo de la fertilización sobre la estructura y funcionalidad de la comunidad microbiana del suelo. Ciencia del suelo, 38(1), 45-55.

Philippot, L., Spor, A., Hénault, C., Bru, D., Bizouard, F., Jones, C. M., ... Maron, P. A. (2013). Loss in microbial diversity affects nitrogen cycling in soil. The ISME journal, 7(8), 1609-1619.

R Development Core Team. (2020). R: A language and environment for statistical computing.

Rousk, J., Bååth, E., Brookes, P.C., Lauber, C.L., Lozupone, C., Caporaso, J.G., Fierer, N. (2010). Soil bacterial and fungal communities across a pH gradient in an arable soil. The ISME journal. 4(10), 1340-1351.

Sainz Rozas, H., Eyherabide, M., Larrea, G., Martínez Cuesta, M., Angelini, H., Reussi Calvo, N., Wyngaard, N. (2019). Relevamiento y determinación de propiedades químicas en suelos de aptitud agrícola de la región pampeana. Actas Simposio Fertilidad. 141–158.

Salazar, S., Sánchez, L.E., Alvarez, J., Valverde, A., Galindo, P., Igual, J.M., Santa-Regina, I. (2011). Correlation among soil enzyme activities under different forest system management practices. Ecological Engineering. 37(8), 1123-1131.

Serri, D. L., Boccolini, M., Oberto, R., Chavarría, D., Bustos, N., Vettorello, C., ... and Vargas Gil, S. (2018). Efecto de la agriculturización sobre la calidad biológica del suelo. Ciencia del suelo. 36(2), 92-104.

Shannon, C.E. (1948). A mathematical theory of communication. Bell System Technical Journal. 27, 379–423.

Sinsabaugh, R. L., Hill, B. H., Follstad Shah, J. J. (2009). Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature, 462(7274), 795-798.

Soil Survey Staff. (2014). Keys to Soil Taxonomy, 12 th ed. United States Department of Agriculture- Natural Resources Conservation Service, Washington, DC.

Song, Y.N., Zhang, F.S., Marschner, P., Fan, F.L., Gao, H.M., Bao, X.G., Li, L. (2007). Effect of intercropping on crop yield and chemical and microbiological properties in rhizosphere of wheat (Triticum aestivum L.), maize (Zea mays L.), and faba bean (Vicia faba L.). Biology and Fertility of Soils. 43(5), 565-574. DOI 10.1007/s00374-006-0139-9.

Stoykov, Y. M., Pavlov, A. I., Krastanov, A. I. (2015). Chitinase biotechnology: production, purification, and application. Engineering in Life Sciences, 15(1), 30-38.

Tiemann, L.K., Grandy, A.S., Atkinson, E.E., Marin‐Spiotta, E., McDaniel, M.D. (2015). Crop rotational diversity enhances belowground communities and functions in an agroecosystem. Ecology letters. 18(8), 761-771.

Truong, C., Gabbarini, L.A., Corrales, A., Mujic, A.B., Escobar, J.M., Moretto, A., Smith, M.E. (2019). Ectomycorrhizal fungi and soil enzymes exhibit contrasting patterns along elevation gradients in southern Patagonia. New Phytol. 222(4), 1936–1950.

Vance, E.D., Brookes, P.C., Jenkinson, D.S., (1987). An extraction method for measuring soil microbial biomass C. Soil biology and Biochemistry. 19(6), 703-707.

Van Elsas, J. D., Hartmann, A., Schloter, M., Trevors, J. T., & Jansson, J. K., 2019. The bacteria and archaea in soil. In Modern soil microbiology (pp. 49-64). CRC Press.

Wall, L. G., Gabbarini, L. A., Ferrari, A. E., Frene, J. P., Covelli, J., Reyna, D., Robledo, N. B. (2019). Changes of paradigms in agriculture soil microbiology and new challenges in microbial ecology. Acta Ecological, 95, 68-73.

Wagg, C., Bender, S.F., Widmer, F., Van der Heijden, M.G. (2014). Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences. 111(14), 5266-5270.

Walkley, A and Black, I.A. (1934). An examination of Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 37, 29-38.

Wang, Y., Ji, H., Wang, R., Guo, S., Gao, C. (2017). Impact of root diversity upon coupling between soil C and N accumulation and bacterial community dynamics and activity: result of a 30 year rotation experiment. Geoderma, 292, 87-95.

Wezel, A., Casagrande, M., Celette, F., Vian, JF., Ferrer, A., Peigné, J. (2014). Agroecological practices for sustainable agriculture. A review. Agronomy for sustainable development. 34(1), 1-20. DOI 10.1007/s13593-013-0180-7.

Williams, A., Börjesson, G., Hedlund, G. (2013). The effects of 55 years of different inorganic fertilizer regimes on soil properties and microbial community composition. Soil Biol. Biochem. 67, 41–46.

Wilson, D. B. (2011). Microbial diversity of cellulose hydrolysis. Current opinion in microbiology, 14(3), 259-263.




Cómo citar

Ortiz, J., Valeria Soledad, Zamora, M., Boccolini, M., Lorenzon, C. ., Pegoraro, V., & Gabbarini, L. (2023). CROP DIVERSITY IMPROVES CARBON, NITROGEN AND SOIL BIOLOGICAL FUNCTIONS IN AN AGROECOLOGICAL SYSTEM. Ciencia Del Suelo, 41(2), 144–156. Recuperado a partir de



Biología del Suelo