EMISIONES DE ÓXIDO NITROSO DESDE UN SUELO ARGIUDOL TIPICO CON ENMIENDAS ORGANICAS Y QUÍMICAS

Autores/as

  • Vanina Cosentino INTA
  • Mónica Gabriela Pérez
  • Mauro Ezequiel Ostinelli
  • Romina Ingrid Romaniuk
  • Natalia Andrea Mortola
  • Pedro Federico Rizzo
  • Alejandro Oscar Costantini

Palabras clave:

enmienda, gases efecto invernadero, fertilizantes orgánicos, pérdidas de nitrógeno

Resumen

El aumento de las fuentes de fertilización será necesario para satisfacer la creciente demanda de alimentos en todo el mundo. Por este motivo, las enmiendas orgánicas surgen como una alternativa a los fertilizantes sintéticos. El compostaje de residuos orgánicos estabiliza el contenido de nitrógeno (N) y retrasa la liberación de N al suelo. La aplicación de enmiendas compostadas al suelo podría reducir las pérdidas de N, incluido el óxido nitroso (N2O), un gas de efecto invernadero con gran potencial de calentamiento global. El objetivo de este trabajo fue evaluar la emisión de N2O desde un suelo Argiudol típico luego de aplicar un fertilizante sintetico tradicional, guano de ave crudo y compostado y un suelo control. Las tasas emisión de N2O acumuladas durante los 32 días que duro el ensayo fueron 1273, 965, 423 y 244 g de N2O-N / ha desde el suelo con aplicación de urea, guano de ave, compost de guano de ave y control, respectivamente. Nuestros resultados sugieren que la aplicación de compost de guano al suelo produce menores emisiones de N2O que la aplicación de guano de ave crudo o de urea. La presencia de compuestos más estabilizados en el compost de guano disminuye la disponibilidad de nitrato del suelo.

Citas

Akiyama, H & H Tsuruta. 2003. Nitrous Oxide, Nitric Oxide, and Nitrogen Dioxide Fluxes from Soils after Manure and Urea Application. J Environ Qual 32: 423–431. https://doi.org/10.2134/jeq2003.4230.

Alexandratos, N. 2012. World agriculture towards 2030 / 2050. The 2012 Revision PROOF COPY. ESA Work Pap. 12: 146.

Alves, BJR; KA Smith; RA Flores; AS Cardoso; WRD Oliveira; CP Jantalia; S Urquiaga & RM Boddey. 2012. Selection of the most suitable sampling time for static chambers for the estimation of daily mean N2O flux from soils. Soil Biol Biochem. 46: 129–135. Elsevier Ltd. https://doi.org/10.1016/j.soilbio.2011.11.022.

Blake, G. 1965. Bulk Density 374-390. Methods of soil analysis. Part 1: Physical and mineralogical properties, including statistics of measurement and sampling (pp. 374-390).

Bustamante, MA; C Paredes; FC Marhuenda-Egea; A Pérez-Espinosa; MP Bernal & R Moral. 2008. Co-composting of distillery wastes with animal manures: Carbon and nitrogen transformations in the evaluation of compost stability. Chemosphere. 72: 551–557. https://doi.org/10.1016/j.chemosphere.2008.03.030.

Castaldi, S. 2000. Responses of nitrous oxide, dinitrogen and carbon dioxide production. Biol Fertil Soils. 32: 67–72.

Cataldo, DA; MH Haroon; LE Schrader & VL Youngs. 1975. Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun Soil Sci Plant Anal. 6: 71–80. https://doi.org/10.1080/00103627509366547.

Chirinda, N; S Loaiza; L Arenas; V Ruiz; C Faverín; C Alvarez; JV Savian; R Belfon; K Zuniga; LA Morales-Rincon; C Trujillo; M Arango; I Rao; J Arango; M Peters; R Barahona; C Costa; TS Rosenstock; M Richards; D Martinez-Baron & L Cardenas. 2019. Adequate vegetative cover decreases nitrous oxide emissions from cattle urine deposited in grazed pastures under rainy season conditions. Sci Rep. 9: 1–9. https://doi.org/10.1038/s41598-018-37453-2

Cosentino, VRN; PL Fernandez; SA Figueiro & MA Taboada. 2012. N2O emissions From a Cultivated Mollisol : Optimal Time of Day for Sampling and the Role of Soil. R. Bras. Ci. Solo. 36: 1814–1819.

Cosentino, VRN; SA Figueiro Aureggui & MA Taboada. 2013. Hierarchy of factors driving N2O emissions in non-tilled soils under different crops. Eur J Soil Sci. 64: 550–557. https://doi.org/10.1111/ejss.12080

Cosentino, VRN; RI Romaniuk; AM Lupi; FM Gómez; H Rimski Korsakov; CR Álvarez & E Ciarlo. 2020. Comparison of field measurement methods of nitrous oxide soil emissions: from the chamber to the vial. R. Bras. Ci. Solo 44:e0190100. 16-6-2020. https://doi.org/10.36783/18069657rbcs20190100.

Dalal, RC; I Gibson; DE Allen & NW Menzies. 2010. Green waste compost reduces nitrous oxide emissions from feedlot manure applied to soil. Agric Ecosyst Environ. 136: 273–281. https://doi.org/10.1016/j.agee.2009.06.010.

Dalal, RC; W Wang; GP Robertson & WJ Parton. 2003. Nitrous oxide emission from Australian agricultural lands and mitigation options: a review. Aust J Soil Res. 41: 165–195.

Davidson, EA. 1991. Fluxes of nitrous oxide and nitric oxide from terrestrial ecosystems. In Rogers JE & W Whitman (eds.). Microbial production and consumption of greenhouse gases: methane, nitrógeno oxides, and halomethanes. pp. 219–235.

Di Rienzo, JA; F Casanoves; MG Balzarini; L Gonzalez; M Tablada & CK Robledo. 2008. Group InfoStat.

Dorich, C; R Conant & P Grace. 2020. Global Research Alliance N2O chamber methodology guidelines: Guidance for gap-filling missing measurements. J Environ Qual. https: //doi.org/10.1002/jeq2.20138.

Galloway, JN; AR Townsend; JW Erisman; M Bekunda; Z Cai; JR Freney; LA Martinelli; SP Seitzinger & MA Sutton. 2008. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science. 320: 889–892. https://doi.org/10.1126/science.1136674

Godfray, HCJ; P Aveyard; T Garnett; JW Hall; TJ Key; J Lorimer ... & SA Jebb. 2018. Meat consumption, health, and the environment. Science, 361(6399), eaam5324.

Gómez, J. 2000. Feriva S. A. Colombia. Abonos orgánicos. pp. 49–69.

Gregorutti, VC & OP Caviglia. 2017. Nitrous oxide emission after the addition of organic residues on soil surface. Agric Ecosyst Environ. 246: 234–242. https://doi.org/10.1016/j.agee.2017.06.016.

Hayakawa, A; H Akiyama; S Sudo & K Yagi. 2009. N2O and NO emissions from an Andisol field as influenced by pelleted poultry manure. Soil Biol Biochem. 41: 521–529. https://doi.org/10.1016/j.soilbio.2008.12.011.

Hénault, C; A Grossel; B Mary; M Roussel & J LéOnard. 2012. Nitrous Oxide Emission by Agricultural Soils: A Review of Spatial and Temporal Variability for Mitigation. Pedosphere. 22: 426–433. https://doi.org/10.1016/S1002-0160(12)60029-0

Hessen, DO; GI A°gren; TR Anderson; JJ Elser & PC De Ruiter. 2004. Carbon sequestration in ecosystems: the role of stoichiometry. Ecology, 85, 1179–1192.

INTA. 2019. Instituto Nacional de Tecnología Agropecuaria. http://anterior.inta.gov.ar/suelos/cartas/.

IPCC. 2014. Intergovernmental Panel on Climate Change. Climate Change 201: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.

IPCC. 2019. Intergovernmental panel on climate change. Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 4. Agriculture, Forestry and Other Land Use. Chapter 10. Emissions from livestock and manure management.

Kim, S & BE Dale. 2008. Effects of nitrogen fertilizer application on greenhouse gas emissions and economics of corn production. Environ Sci Technol. 42: 6028–6033..

Kim, SU; C Ruangcharus; S Kumar; HH Lee; HJ Park; ES Jung & CO Hong. 2019. Nitrous oxide emission from upland soil amended with different animal manures. Appl Biol Chem. 62. https://doi.org/10.1186/s13765-019-0409-5.

Martín-Olmedo, P & RM Rees. 1999. Short-term N availability in response to dissolved-organic-carbon from poultry manure, alone or in combination with cellulose. Biol Fertil Soils. 29: 386–393. https://doi.org/10.1007/s003740050569.

Masaka, J; J Nyamangara & M Wuta. 2014. Nitrous oxide emissions from wetland soil amended with inorganic and organic fertilizers. Arch Agron Soil Sci. 60: 1363–1387. https://doi.org/10.1080/03650340.2014.890707.

Mahmud, K; D Panday; A Mergoum & A Missaoui. Nitrogen Losses and Potential Mitigation Strategies for a Sustainable Agroecosystem. 2021. Sustainability 13 (4) 2400. https://doi.org/ 10.3390/su13042400.

Paustian, K; J Lehmann; S Ogle; D Reay; GP Robertson; P Smith & WK Kellogg. 2016. Climate-smart soils. Nature. 532: 49–57.

Perez, MG; RI Romaniuk; VRN Cosentino; M Busto; FA González; MA Taboada; BJR Alves & AO Costantini. 2021. Winter soil N2O emissions from a meat production system under direct grazing of Argentine Pampa. Anim Prod Sci. 61: 156–162. https://doi.org/10.1071/AN19517.

Popp, J; Z Lakner; M Harangi-Rákos & M Fári. 2014. The effect of bioenergy expansion: Food, energy, and environment. Renew Sustain Energy Rev. 32: 559–578. https://doi.org/10.1016/j.rser.2014.01.056.

Quiroga, G; L Castrillón; Y Fernández-Nava & E Marañón. 2010. Physico-chemical analysis and calorific values of poultry manure. Waste Manag. 30: 880–884. https://doi.org/10.1016/j.wasman.2009.12.016

Rapson, TD & H Dacres. 2014. Analytical techniques for measuring nitrous oxide. TrAC - Trends Anal Chemistry. 54: 65–74. https://doi.org/10.1016/j.trac.2013.11.004.

Rizzo, PF; PA Bres; BJ Young; MS Zubillaga; NI Riera; ME Beily; A Argüello; DC Crespo; A Sánchez & D Komilis. 2020. Temporal variation of physico-chemical, microbiological, and parasitological properties of poultry manure from two egg production systems. J Mater Cycles Waste Manag. 22: 1140–1151. https://doi.org/10.1007/s10163-020-01008-3.

Rizzo, PF; V Della Torre; NI Riera; D Crespo; R Barrena & A Sánchez. 2015 Co-composting of poultry manure with other agricultural wastes: process performance and compost horticultural use. J Mater Cycles Waste Manag. 17: 42–50. https://doi.org/10.1007/s10163-013-0221-y.

Rochette, P. & NS Eriksen-Hamel. 2008. Chamber Measurements of Soil Nitrous Oxide Flux: Are Absolute Values Reliable? Soil Sci Soc Am J.. 72: 331–342. https://doi.org/10.2136/sssaj2007.0215

Roig, N; J Sierra; E Martí; M Nadal; M Schuhmacher & JL Domingo. 2012. Long-term amendment of Spanish soils with sewage sludge: Effects on soil functioning. Agric Ecosyst Environ. 158: 41–48. https://doi.org/10.1016/j.agee.2012.05.016.

Schindlbacher, A; S Zechmeister-Boltenstern & K Butterbach-Bahl. 2004. Effects of soil moisture and temperature on NO, NO2, and N2O emissions from European forest soils. J Geophys Res D Atmos. 109: 1–12. https://doi.org/10.1029/2004JD004590.

SCyMA & SENASA. 2019. Resolución Conjunta 1/19 - Marco Normativo para la Producción, Registro y Aplicación de Compost. Ciudad Autónoma de Buenos Aires.

Shelton, DR; AM Sadeghi & GW McCarty. 2000. Effect of soil water content on denitrification during cover crop decomposition. Soil Sci. 165: 365-371.

Snyder, CS; TW Bruulsema; TL Jensen & PE Fixen. 2009. Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agric Ecosyst Environ. 133: 247–266.

Steenwerth, K. & KM Belina. 2008. Cover crops and cultivation: Impacts on soil N dynamics and microbiological function in a Mediterranean vineyard agroecosystem. Applied Soil Ecology. 40: 370-380.Sterner, RW & JJ Elser. 2002. Stoichiometry and homeostasis. In: Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere (eds R.W. Sterner & J. Elser), pp. 1–42. Princeton University, Princeton, NJ.

Thornton, FC; NJ Shurpali; BR Bock & KC Reddy. 1998. N2O and NO emissions from poultry litter and urea applications to Bermuda grass. Atmos Environ. 32: 1623–1630. https://doi.org/10.1016/j.agee.2009.04.021.

Tian, H; C Lu; P Ciais; AM Michalak; JG Canadell; E Saikawa; DN Huntzinger; KR Gurney; S Sitch; B Zhang; J Yang; P Bousquet; L Bruhwiler; G Chen; E Dlugokencky; P Friedlingstein; J Melillo; S Pan; B Poulter; R Prinn; M Saunois; CR Schwalm & SC Wofsy. 2016. The terrestrial biosphere as a net source of greenhouse gases to the atmosphere. Nature. 531: 225–228. https://doi.org/10.1038/nature16946

Tyson, SC & ML Cabrera. 1993. Nitrogen Mineralization in Soils Amended with Composted and Uncomposted Poultry Litter. Commun Soil Sci Plant Anal. 24: 2361–2374. https://doi.org/10.1080/00103629309368961.

Zechmeister-Boltenstern, S; G Schaufler & B Kitzler. 2007. NO, NO2, N2O, CO2 and CH4 fluxes from soils under different land use: temperature sensitivity and effects of soil moisture. 2007. Geophys Res Abstr. 9: 7968.

Publicado

29-08-2022

Cómo citar

Cosentino, V., Pérez , M. G., Ostinelli , M. E., Romaniuk , R. I., Mortola , N. A., Rizzo , P. F., & Costantini , A. O. (2022). EMISIONES DE ÓXIDO NITROSO DESDE UN SUELO ARGIUDOL TIPICO CON ENMIENDAS ORGANICAS Y QUÍMICAS. Ciencia Del Suelo, 40(1). Recuperado a partir de https://ojs.suelos.org.ar/index.php/cds/article/view/710

Número

Sección

Contaminación del Suelo y Calidad del Medio Ambiente